Model References

D. B. Clark, L. M. Mercado, S. Sitch, C. D. Jones, N. Gedney, M. J. Best, M. Pryor, G. G. Rooney, R. L. H. Essery, E. Blyth, O. Boucher, R. J. Harding, and P. M. Cox. The Joint UK Land Environment Simulator (JULES), Model description - Part 2: Carbon fluxes and vegetation. Geoscientific Model Development Discussions, 4(1):641-688, 2011. [ DOI | http ]

M. J. Best, M. Pryor, D. B. Clark, G. G. Rooney, R. L. H. Essery, C. B. Ménard, J. M. Edwards, M. A. Hendry, A. Porson, N. Gedney, L. M. Mercado, S. Sitch, E. Blyth, O. Boucher, P. M. Cox, C. S. B. Grimmond, and R. J. Harding. The Joint UK Land Environment Simulator (JULES), Model description - Part 1: Energy and water fluxes. Geoscientific Model Development Discussions, 4(1):595-640, 2011. [ DOI | http ]

S. Maksyutov, P.K. Patra, R. Onishi, T. Saeki, and T. Nakazawa. NIES/FRCGC global atmospheric tracer transport model: Description, validation, and surface sources and sinks inversion. Journal of the Earth Simulator, 9:3-18, 2008.

S. Maksyutov. Transport model description. Technical report, NIES, 6-2 Onogawa, Tsukuba, Ibaraki, 305-0053, Japan, 2008.

Torben Kunz, Klaus Fraedrich, and Edilbert Kirk. Optimisation of simplified GCMs using circulation indices and maximum entropy production. Clim. Dyn., page 11p, 2007. published online, print to appear. [ DOI | .pdf ]

F. Lunkeit, M. Böttinger, K. Fraedrich, H. Jansen, E. Kirk, A. Kleidon, and U. Luksch. Planet Simulator Reference Manual Version 15.0. Technical report, Meteorologisches Institut, Universität Hamburg, 2007.

D. Clark and P. Harris. Joint UK Land Environment Simulator (JULES) Version 2.0 User Manual. Technical report, NERC/Centre for Ecology & Hydrology, 2007.

J. Liakka. Validation of the dynamical core of the Portable University Model of the Atmosphere (PUMA). Master's thesis, Upsalla University, 2006.

B. Pinty, T. Lavergne, RE Dickinson, JL Widlowski, N. Gobron, and MM Verstraete. Simplifying the interaction of land surfaces with radiation for relating remote sensing products to climate models. J. Geophys. Res, 2006.

M. Giles and P. Glasserman. Smoking adjoints: fast Monte Carlo Greeks. Risk, pages 92-96, 2006.

L. Reimer and M. Hesse. Kurzdokumentation des Mehrblock-Gitterdeformationsverfahrens MUGRIDO, 2006.

Klaus Fraedrich, Edilbert Kirk, Ute Luksch, and Frank Lunkeit. The portable university model of the atmosphere (PUMA): Storm track dynamics and low-frequency variability. Meteorol. Z., 14(6):735-745, 2005.

C. Jones, J. Gregory, R. Thorpe, P. Cox, J. Murphy, D. Sexton, and P. Valdes. Systematic optimisation and climate simulation of FAMOUS, a fast version of HadCM3. Climate Dynamics, 25(2):189-204, 2005.

Thomas Gerhold. Overview of the hybrid rans code tau. In Jens K. Kroll, Norbert; Fassbender, editor, MEGAFLOW- Numerical Flow Simulation for Aircraft Design, volume 89 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 81 - 92. Springer Verlag, 2005. [ http ]

A brief introduction is given which first describes the history of frame in which the TAU code was developed before explaining the main advantages which were the drivers for the selection of the approach. In the following an algorithmic overview describes shortly the code functionality before a section about the code design gives some more insight about the implementation and its scripting capability.

K. Fraedrich, H. Jansen, E. Kirk, U. Luksch, and F. Lunkeit. The Planet Simulator: Towards a user friendly model. Meteorol. Z., 14:299-304, 2005.

P. Parekh, MJ Follows, and EA Boyle. Decoupling of iron and phosphate in the global ocean. Global Biogeochemical Cycles, 19(2), 2005. [ DOI ]

M. Heimann and S. Körner. The global atmospheric tracer model TM3. Technical Report 5, Max-Planck-Institut für Biogeochemie, Jena, Germany, 2003.

P. Cusdin and J.-D. Müller. EULSOLDO. Technical Report QUB-SAE-03-02, QUB School of Aeronautical Engineering, 2003. [ http | .pdf ]

Torben Kunz. Eine Bewertungsfunktion zur Parameteroptimierung in globalen atmosphärischen Zirkulationsmodellen. Diplomarbeit, Meteorologisches Institut, Universität Hamburg, 2003.

F. Kauker, R. Gerdes, M. Karcher, C. Köberle, and J.L. Lieser. Variability of Arctic and North Atlantic sea ice: A combined analysis of model results and observations from 1978 to 2001. Journal of Geophysical Research Oceans, 108(C6):13-1, 2003.

J. P. Thomas, E. H. Dowell, and K. C. Hall. Nonlinear inviscid aerodynamic effects on transonic divergence, flutter and limit cycle oscillations. AIAA Journal, 40(4):638-646, 2002.

J. P. Thomas, E. H. Dowell, and K. C. Hall. Modeling viscous transonic limit cycle oscillation behavior using a harmonic balance approach. IAAA Paper 2002-1414, AIAA, Reston Va, USA, 2002.

K. C. Hall, J. P. Thomas, and J. P. Clark. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA Journal, 40(5):879-886, 2002.

P. Moinier, J.-D. Müller, and M. B. Giles. Edge-based multigrid schemes and preconditioning for hybrid grids. AIAA Journal, 40(10), 2002.

M. Bücker, R. Beucker, and C. Bischof. Using Automatic Differentiation for the Minimal p-Norm solution of the Biogmagnetic Inverse Problem. In A. Heemink, L. Dekker, H. de Swaan, I Smit, and T. von Stijn, editors, Shaping Future with Simulation, Proceedings of the 4-th International Eurosim 2001 Congress, Delft, The Netherlands, June 26-29, 2001. Dutch Benelux Simulation Society, 2001.

M. Xue, K. K. Droegemeier, V. Wong, A. Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and D.-H. Wang. The Advanced Regional Prediction System (ARPS) - A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Physics, 76:134-165, 2001. [ .pdf ]

W. Knorr. Annual and interannual CO2 exchanges of the terrestrial biosphere: process based simulations and uncertainties. Glob. Ecol. and Biogeogr., 9:225-252, 2000.

M. Xue, K. K. Droegemeier, and V. Wong. The Advanced Regional Prediction System (ARPS) - A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Physics, 75:161-193, 2000. [ .pdf ]

Christian Franzke, Klaus Fraedrich, and Frank Lunkeit. Low frequency variability in a simplified atmospheric global circulation model: Storm track induced 'spatial resonance'. Quart. J. Roy. Meteor. Soc., 126:2691-2708, 2000.

R. C. Pacanowski and S. M. Griffies. MOM 3.0 Manual. Technical report, NOAA/Geophysical Fluid Dynamics Laboratory, 1999. [ .html ]

Stefan Turek. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach. Springer, Heidelberg, 1999.

Michael Hinze. Optimal and instantaneous control of the instationary Navier-Stoke s equations, Habilitationsschrift. Fachbereich Mathematik, Technische Universität Berlin, 1999.

A. Oschlies and V. Garçon. An eddy-permitting coupled physical-biological model of the north atlantic: 1. sensitivity to advection numerics and mixed layer physics. Global Biogeochemical Cycles, 13(1):135-160, 1999.

M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, Philadelphia, 1998.

In this translation of the German edition, the authors provide insight into the numerical simulation of fluid flow. Using a simple numerical method as expository example, the individual steps of scientific computing are presented: the derivation of the mathematical model, the discretization of the model equations, the development of algorithms, parallelization, and visualization of the computed data. In addition to the treatment of the basic equations for modeling laminar, transient flow of viscous, incompressible fluids-the Navier-Stokes equations-the authors look at the simulation of free surface flows, energy and chemical transport, and turbulence. Detailed hints for the implementation of the various algorithms enable readers to write their own flow simulation program from scratch. The variety of applications is shown in several simulation results, including 93 black-and-white and 17 color illustrations. Moreover, after reading this book, readers should be able to understand more enhanced algorithms of computational fluid dynamics and to apply their new knowledge of modeling, discretization, parallelization, and visualization to other scientific fields, where numerical simulation has established itself, in addition to theoretical investigations and practical experiments, as a new path for uncovering the laws of nature. Among these fields are the examination of elastic solids, combustion, melting and coating processes, and crystal growth, as well as weather prediction.

Klaus Fraedrich, Edilbert Kirk, and Frank Lunkeit. Portable University Model of the Atmosphere. Technical Report 16, DKRZ, Oktober 1998.

T. Frisius, F. Lunkeit, K. Fraedrich, and I.N. James. Storm-track organization and variability in a simplified atmospheric global circulation model. Quart. J. Roy. Meteor. Soc., 124(548):1019 - 1043, APR 1998.

W. Knorr. Satellitengestützte Fernerkundung und Modellierung des Globalen CO2 -Austauschs der Landvegetation: Eine Synthese. PhD thesis, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1997.

S.-J. Lin. A finite volume integration method for computing pressure gradient force in general vertical coordinates. Quart. J. Roy. Meteor. Soc., 123:1749-1762, 1997.

S.-J. Lin and R. B. Rood. An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart. J. Roy. Meteor. Soc., 123:2477-2498, 1997.

P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 135(2):250-258, 1997.

T. Gerhold, O. Friedrich, J. Evans, and M. Galle. Calculation of Complex Three-Dimensional Configurations Employing the DLR-TAU-Code. AIAA Paper, 167, 1997.

A. Brace, D. Gatarek, and M. Musiela. The Market Model of Interest Rate Dynamics. Mathematical Finance, 7(2):127-155, 1997.

N. Gobron, B. Pinty, M. M. Verstraete, and Y. Govaerts. A semidiscrete model for the scattering of light by vegetation. J. Geophys. Res., 102(D8):9431-9446, 1997.

An advanced bidirectional reflectance factor model is developed to account for the architectural effects exhibited by homogeneous vegetation canopies for the first orders of light scattering. The characterization of the canopy allows the simulation of the relevant scattering processes as a function of the number, size, and orientation of the leaves, as well as the total height of the canopy. A turbid medium approach is used to represent the contribution to the total reflectance due to the light scattering at orders higher than 1. This model therefore incorporates two previously separate approaches to the problem of describing light scattering in plant canopies and enhances existing models relying on parameterized formulae to account for the hot spot effect in the extinction coefficient. Simulation results using this model compare quite favorably with those produced with a Monte Carlo ray-tracing model for a variety of vegetation cases, The semidiscrete model is also inverted against a well-documented data set of bidirectional reflectance factors taken over a soybean canopy, It is shown that the inversion of the model against a small subset of these measurements leads to reasonable values for the retrieved canopy parameters, These values are used in a direct mode to simulate the bidirectional reflectance factors for solar and viewing conditions significantly different from those available in the subset of soybean data and compared with the full set of actual measurements.

S.-J. Lin and R. B. Rood. Multidimensional flux-form semi-Lagrangian transport scheme. Mon. Wea. Rev., 124(9):2046-2070, 1996.

S. Taguchi. A three-dimensional model of atmospheric CO2 transport based on analyzed winds: Model description and simulation results for TRANSCOM. J. Geophys. Res., 101:15099-15109, 1996.

Martin Heimann. The global atmospheric tracer model TM2. Technical Report No. 10, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1995.

W. Knorr and M. Heimann. Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus, Ser. B, 47(4):471-489, 1995.

John Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey. A Finite-Volume, Incompressible Navier Stokes Model for Studies of the ocean on Parallel Computers. Technical Report 36, Massachusetts Institut of Technology, Center for Global Change Science, Cambridge, MA 02139, USA, 1995.

Bijan Mohamadi. Fluid Dynamics Computation with NSC2KE, User-Guide, Release 1.0. Technical Report RT-0164, INRIA, May 1994.

Y. Saad. Sparskit: A Basic Tool Kit for Sparse Matrix Computation, 1994.

S. Taguchi. Inter-hemispheric exchange in the troposphere by an atmospheric transport model based on observed winds. J. Meteor. Soc. Japan, 71:123-134, 1993.

B. J. Hoskins and A. J. Simmons. A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101:637-655, 1975.

S.P. Timoshenko and J.N. Goodier. Theory of Elasticity. third edition, 1970.

J. Raddatz and J. Fassbender. Block Structured Navier-Stokes Solver FLOWer. MEGAFLOW- Numerical Flow Simulation for Aircraft Design, edited by N. Kroll and J. Fassbender, 89:27-44.

Copyright © FastOpt - all rights reserved