Publications on carbon cycle data assimilation

S. Kemp, M. Scholze, T. Ziehn, and T. Kaminski. Limiting the parameter space in the carbon cycle data assimilation system (ccdas). Geoscientific Model Development, 7(4):1609-1619, 2014. [ DOI | http ]

T. Kato, W. Knorr, M. Scholze, E. Veenendaal, T. Kaminski, J. Kattge, and N. Gobron. Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in botswana. Biogeosciences, 10(2):789-802, 2013. [ DOI | http ]

E. N. Koffi, P. J. Rayner, M. Scholze, F. Chevallier, and T. Kaminski. Quantifying the constraint of biospheric process parameters by co2 concentration and flux measurement networks through a carbon cycle data assimilation system. Atmospheric Chemistry and Physics, 13(21):10555-10572, 2013. [ DOI | http ]

T. Kaminski, W. Knorr, G. Schürmann, M. Scholze, P. J. Rayner, S. Zaehle, S. Blessing, W. Dorigo, V. Gayler, R. Giering, N. Gobron, J. P. Grant, M. Heimann, A. Hooker-Strout, S. Houweling, T. Kato, J. Kattge, D. Kelley, S. Kemp, E. N. Koffi, C. Köstler, P.P. Mathieu, B. Pinty, C. H. Reick, C. Rödenbeck, R. Schnur, K. Scipal, C. Sebald, T. Stacke, A. Terwisscha van Scheltinga, M. Vossbeck, H. Widmann, and T. Ziehn. The BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences and challenges. J. Geophys. Res., 118:doi:10.1002/jgrg.20118, 2013. [ http | .pdf ]

Michael Buchwitz, Maximilian Reuter, Oliver Schneising, Hartmut Boesch, Sandrine Guerlet, Bart Dils, Ise Aben, Raymond Armante, Peter Bergamaschi, Thomas Blumenstock, Heinrich Bovensmann, Dominik Brunner, Brigitte Buchmann, John P Burrows, Andre Butz, Alain Chedin, Frederic Chevallier, Cyril D Crevoisier, Nicholas Deutscher, Christian Frankenberg, Otto P Hasekamp, Jens Heymann, Thomas Kaminski, Alexandra Laeng, Günter Lichtenberg, Martine De Maziere, Stefan Noel, Justus Notholt, Johannes Orphal, Christoph Popp, Robert Parker, Marko Scholze, Ralf Sussmann, Gabriele P Stiller, Thorsten Warneke, Claus Zehner, Andrey Bril, David Crisp, David Griffith, Akihiko Kuze, Christopher O'Dell, Sergey Oshchepkov, Vanessa Sherlock, Hiroshi Suto, Paul Wennberg, Debra Wunch, Tatsuya Yokota, and Yukio Yoshida. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparison and quality assessment of near-surface sensitive satellite-derived CO2 and CH4 global data sets. submitted to Remote Sensing of Environment, page in press, 2013.

T. Kaminski, P. J. Rayner, M. Voßbeck, M. Scholze, and E. Koffi. Observing the continental-scale carbon balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by means of quantitative network design. Atmospheric Chemistry and Physics, 12(16):7867-7879, 2012. [ DOI | http ]

The paper presents evaluations of observational networks in the network designer. The networks are composed of three data types: direct CO2 flux measurements as well as continuous and flask samples of the atmospheric CO2 concentration

E. Koffi, P. J. Rayner, M. Scholze, and C. Beer. Atmospheric constraints on gross primary productivity and net flux: Results from a carbon-cycle data assimilation system. Glob. Biogeochem. Cyc., 26:doi:10.1029/2010GB003900, 2012. [ DOI | .pdf ]

T. Ziehn, M. Scholze, and W. Knorr. Comparison of monte carlo and adjoint inversion techniques for the efficient estimation of terrestrial ecosystem model parameters and their uncertainties. Global Biogeochemical Cycles, in review, 26:GB3025, 2012. [ http | .pdf ]

T. Kaminski, W. Knorr, M. Scholze, N. Gobron, B. Pinty, R. Giering, and P.-P. Mathieu. Consistent assimilation of MERIS FAPAR and atmospheric CO2 into a terrestrial vegetation model and interactive mission benefit analysis. Biogeosciences, 9(8):3173-3184, 2012. [ DOI | http ]

The contribution demonstrates the first simultaneous assimilation of FAPAR data and atmospheric CO2 and an application of the CCDAS framework to design of space missions with optical sensors.

P. Rayner, E. Koffi, M. Scholze, T. Kaminski, and J.L. Dufresne. Constraining predictions of the carbon cycle using data. Phil. Trans. R. Soc. A, 369(1943):1955-1966, 2011. [ DOI | http | .pdf ]

T. Ziehn, M. Scholze, and W. Knorr. Development of an ensemble-adjoint optimization approach to derive uncertainties in net carbon fluxes. Geoscientific Model Development, 4(4):1011-1018, 2011. [ DOI | http ]

T. Ziehn, J. Kattge, W. Knorr, and M. Scholze. Improving the predictability of global co2 assimilation rates under climate change. Geophys Res Lett, (38):1513-1531, 2011. [ DOI | http | .pdf ]

T. Ziehn, W. Knorr, and M. Scholze. Investigating spatial differentiation of model parameters in a carbon cycle data assimilation system. Global Biogeochemical Cycles, 25(2):GB2021, 2011. [ http | .pdf ]

C. M. Luke. Modelling Aspects of Land-Atmosphere Interaction: Thermal Instability in Peatland Soils and Land Parameter Estimation Through Data Assimilation. PhD thesis, University of Exeter, UK, 2011. [ http ]

W. Knorr, T. Kaminski, M. Scholze, N. Gobron, B. Pinty, R. Giering, and P.-P. Mathieu. Carbon cycle data assimilation with a generic phenology model. J. Geophys. Res., 115, 2010. [ DOI | http | .pdf ]

The paper demonstrates the simultaneous assimilation of FAPAR data from the MERIS sensor at a number of sites. It is the first application that includes hydrology and phenology models in the core of CCDAS rather than running them in a pre step

W. Knorr, T. Kaminski, M. Scholze, N. Gobron, B. Pinty, R. Giering, and P.-P. Mathieu. Carbon cycle data assimilation using satellite-derived fapar and a new generic global phenology scheme. Geophysical Research Abstracts, 12, 2010. [ .ppt/.pdf | .pdf ]

T. Kaminski, W. Knorr, M. Scholze, N. Gobron, B. Pinty, R. Giering, and P.-P. Mathieu. Assimilation of MERIS FAPAR into a Terrestrial Vegetation Model and Mission Design. In Proceedings of 2010 European Space Agency Living Planet Symposium, Bergen, Norway. European Space Agency, 2010. [ .pdf ]

T. Kaminski, W. Knorr, M. Scholze, N. Gobron, B. Pinty, R. Giering, and P.-P. Mathieu. Assimilation of MERIS FAPAR into a Terrestrial Vegetation Model and Mission Design. In Proceedings of ESA, iLEAPS, EGU joint Conference, Frascati, Italy, 3-5 November 2010. European Space Agency, 2010. [ .pdf ]

B. Pinty, I. Andredakis, M. Clerici, T. Kaminski, M. Taberner, P. Lewis, S. Pinnock, and S. Plummer. Relating MERIS FAPAR products to radiation transfer schemes used in climate/numerical weather prediction and carbon models. In Proceedings of ESA, iLEAPS, EGU joint Conference, Frascati, Italy, 3-5 November 2010. European Space Agency, 2010. [ .pdf ]

T. Kaminski, M. Scholze, and S. Houweling. Quantifying the Benefit of A-SCOPE Data for Reducing Uncertainties in Terrestrial Carbon Fluxes in CCDAS. Tellus B, 62(5):784-796, 2010. [ DOI | http | .pdf ]

W. Knorr, T. Kaminski, M. Scholze, N. Gobron, B. Pinty, R. Giering, and P.-P. Mathieu. Local-scale Carbon Cycle Data Assimilation using satellite-derived FAPAR with a generic phenology model. In Proceedings of 8th Carbon dioxide conference at Jena, 2009. [ .ppt/.pdf | .pdf ]

M. Scholze, T. Kaminski, P. Rayner, W. Knorr, and R. Giering. Projecting terrestrial carbon cycling with uncertainties: Results from a Carbon Cycle Data Assimilation System (CCDAS). In Proceedings of 8th Carbon dioxide conference at Jena, 2009. [ .pdf ]

T. Kaminski, P. Rayner, M. Scholze, M. Voßbeck, E. Koffi, R. Giering, and S. Houweling. Supporting the improvement of the carbon observing system by quantitative network design. In Proceedings of 8th Carbon dioxide conference at Jena, 2009. [ .ppt/.pdf | .pdf ]

The paper presents the first application of the network designer plus the evaluation of a space mission

E. Koffi, P. Rayner, M. Scholze, T. Kaminski, F. Chevallier, C. Roedenbeck, M. Voßbeck, R. Giering, W. Knorr, and M. Heimann. Sensitivity of Climate Data Assimilation System to Transport models and Observational networks. In Proceedings of 8th Carbon dioxide conference at Jena, 2009. [ .pdf ]

T. Ziehn, M. Scholze, and W. Knorr. Regionalization of the key carbon storage parameter within the Carbon Cycle Data Assimilation System (CCDAS). In Proceedings of 8th Carbon dioxide conference at Jena, 2009. [ .ppt/.pdf | .pdf ]

T. Kato, M. Scholze, and W. Knorr. The impact of CO2 fertilization on the global terrestrial carbon cycle and interannual changes in CO2 studied through a carbon cycle data assimilation system. In Proceedings of 8th Carbon dioxide conference at Jena, 2009. [ .ppt/.pdf | .pdf ]

E. Koffi, P. Rayner, M. Scholze, T. Kaminski, C. Roedenbeck, M. Voßbeck, R. Giering, W. Knorr, and M. Heimann. Climate data assimilation using inverse modelling: Application to the carbon cycle. Geophysical Research Abstracts, 11, 2009. [ .ppt/.pdf | .pdf ]

W. Knorr, T. Kaminski, M. Scholze, N. Gobron, B. Pinty, and R. Giering. Remote Sensing Input for regional to global CO2 flux modelling. In Proceedings of 2nd MERIS/(A)ATSR User Workshop, Frascati, Italy. European Space Agency, 2008. [ .pdf ]

The paper demonstrates the assimilation of FAPAR data from the MERIS sensor at a number of sites. It is the first application that includes hydrology and phenology models in the core of CCDAS rather than running them in a pre step

T. Kaminski and P. J. Rayner. Assimilation and network design. In H. Dolman, A. Freibauer, and R. Valentini, editors, Observing the continental scale Greenhouse Gas Balance of Europe, Ecological Studies, chapter 3, pages 33-52. Springer-Verlag, New York, 2008. [ DOI | http | .pdf ]

Overview paper on quantitative network design for the carbon cycle

E. Koffi, P. Rayner, T. Kaminski, M. Scholze, M. Voßbeck, and R. Giering. Quantitative network design for biosphere model process parameters. Geophysical Research Abstracts, 10, 2008. [ .ppt/.pdf | .pdf ]

A. Hooker-Stroud. Anthropogenic CO2: Seasonal Fossil Fuel Emissions in CCDAS. Master's thesis, University of Bristol, UK, 2008. [ .pdf ]

D. Kelley. Wildfires as part of the global carbon cycle: quantitative analysis using data assimilation. Master's thesis, University of Bristol, UK, 2008. [ .pdf ]

M. Scholze, T. Kaminski, P. Rayner, W. Knorr, and R. Giering. Propagating uncertainty through prognostic CCDAS simulations. J. Geophys. Res., 112:doi:10.1029/2007JD008642, 2007. [ DOI | .pdf ]

P. Rayner, M. Scholze, W. Knorr, T. Kaminski, R. Giering, and H. Widmann. Two decades of terrestrial Carbon fluxes from a Carbon Cycle Data Assimilation System (CCDAS). Global Biogeochemical Cycles, 19(GB2026):20 PP, 2005. [ DOI | http | .pdf ]

W. Knorr, N. Gobron, M. Scholze, P. Rayner, T. Kaminski, R. Giering, H. Widmann, and J. Kattge. Carbon and fAPAR assimilation within CCDAS. In P. Viterbo, editor, Proceedings of ECMWF/ELDAS Workshop on Land Surface Assimilation, 8-11 November 2004, pages 213-219. European Centre for Medium-Range Weather Forecasts, 2005. [ http | .pdf ]

T. Kaminski, R. Giering, and M. Voßbeck. Efficient sensitivities for the spin-up phase. In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors, Automatic Differentiation: Applications, Theory, and Implementations, volume 50 of Lecture Notes in Computational Science and Engineering, pages 283-291. Springer, New York, NY, 2005. [ DOI | .pdf ]

Demonstrates an alternative AD strategy for iterative solvers that evaluates the full Jacobian for the final iteration.

B. Pak. Parameter optimization using the adjoint of a biosphere model. Abstract A11F-02. Eos Trans. AGU, 85(47), December 2004. [ .txt ]

Wolfgang Knorr and Peter Cox. CAMELS-Carbon Assimilation and Modelling of the European Land Surface. In Peter Bergamaschi, Hartmut Behrend, and Andre Jol, editors, Inverse modelling of national and EU greenhouse gas emission inventories, pages 66-69, 2004. [ .html ]

The paper describes the contribution of CCDAS to the EU FP5 project CAMELS

M. Scholze, P. Rayner, W. Knorr, T. Kaminski, R. Giering, and H. Widmann. Non-linear parameter optimisation of a terrestrial biosphere model using atm. CO2 observations: CCDAS. Geophysical Research Abstracts, 6:06281, 2004. [ .ppt/.pdf | .pdf ]

M. Scholze, P. Rayner, W. Knorr, T. Kaminski, R. Giering, and H. Widmann. A global carbon cycle data assimilation system (CCDAS) to infer atmosphere-biosphere CO2 exchanges. Geophysical Research Abstracts, 6:07504, 2004. [ .pdf ]

T. Kaminski, R. Giering, M. Scholze, P. Rayner, and W. Knorr. A prototype of a data assimilation system based on automatic differentiation. Geophysical Research Abstracts, 5:11812, 2003. [ .ppt/.pdf | .pdf ]

T. Kaminski, R. Giering, M. Scholze, P. Rayner, and W. Knorr. An example of an automatic differentiation-based modelling system. In V. Kumar, L. Gavrilova, C. J. K. Tan, and P. L'Ecuyer, editors, Computational Science - ICCSA 2003, International Conference Montreal, Canada, May 2003, Proceedings, Part II, volume 2668 of Lecture Notes in Computer Science, pages 95-104, Berlin, 2003. Springer. [ .ppt/.pdf | .pdf ]

The paper presents a prototype of a Carbon Cycle Data Assimilation System (CCDAS), which is composed of a terrestrial biosphere model (BETHY) coupled to an atmospheric transport model (TM2), corresponding derivative codes as well as a derivative-based optimisation routine. In calibration mode, we use first and second derivatives, to estimate model parameters and their uncertainties from atmospheric observations and their uncertainties. In prognostic mode, we use first derivatives, to map model parameters and their uncertainties onto prognostic quantities and their uncertainties.

M. Scholze. Model studies on the response of the terrestrial carbon cycle on climate change and variability. Examensarbeit, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2003. [ .html | .pdf ]

M. Scholze, P. Rayner, W. Knorr, T. Kaminski, and R. Giering. A prototype Carbon Cycle Data Assimilation System (CCDAS): Inferring interannual variations of vegetation-atmosphere CO2 fluxes. Abstract CG62A-05. Eos Trans. AGU, 83(47), December 2002. [ .ppt/.pdf | http ]

T. Kaminski, W. Knorr, P. Rayner, and M. Heimann. Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle. Global Biogeochemical Cycles, 16(4):14-1-14-16, 2002. [ http | .ps.gz | .pdf ]

T. Kaminski and M. Heimann. Inverse modeling of atmospheric carbon dioxide fluxes. Science, 294(5541):259, 2001. [ http | .ps.gz ]

T. Kaminski, P. Rayner, M. Heimann, and I. Enting. On aggregation errors in atmospheric transport inversions. J. Geophys. Res., 106(D5):4703, 2001. [ .ps.gz | .pdf ]

P. Rayner, W. Knorr, M. Scholze, R. Giering, T. Kaminski, M. Heimann, and C. Le Quere. Inferring terrestrial biosphere carbon fluxes from combined inversions of atmospheric transport and process-based terrestrial ecosystem models. In Proceedings of 6th Carbon dioxide conference at Sendai, pages 1015-1017, 2001. [ .pdf ]

This is the first document featuring the implementation of a carbon cycle data assimilation and prediction scheme, which is based on the terrestrial biosphere model BETHY

R. Giering. Tangent linear and adjoint biogeochemical models. In Prasad S. Kasibhatla, editor, Inverse Methods in Global Biogeochemical Cycles, volume 114, pages 33-48. American Geophysical Union, 2000. [ .ps | .pdf ]

M. Heimann and T. Kaminski. Inverse modeling approaches to infer surface trace gas fluxes from observed atmospheric mixing ratios. In A. F. Bouwman, editor, Approaches to scaling of trace gas fluxes in ecosystems, chapter 14, pages 275-295. Elsevier, Amsterdam, 1999. [ http | .ps.gz | .pdf ]

T. Kaminski, M. Heimann, and R. Giering. A coarse grid three dimensional global inverse model of the atmospheric transport, 1, Adjoint model and Jacobian matrix. J. Geophys. Res., 104(D15):18,535-18,553, 1999. [ .ps.gz | .pdf ]

T. Kaminski, M. Heimann, and R. Giering. A coarse grid three dimensional global inverse model of the atmospheric transport, 2, Inversion of the transport of CO2 in the 1980s. J. Geophys. Res., 104(D15):18,555-18,581, 1999. [ .ps.gz | .pdf ]

M. Heimann and T. Kaminski. Aktueller Forschungsschwerpunkt: Quellen und Senken des atmosphärischen Kohlendioxids. In Jahresbericht der MPG 1998. Max-Planck-Gesellschaft, Munich, Germany, 1999. [ .ps.gz | .pdf ]

T. Kaminski, M. Heimann, and R. Giering. A matrix representation for an atmospheric transport model computed by its adjoint. In S.-E. Gryning and N. Chaumerliac, editors, Air Pollution Modelling and its Application XII, pages 247-255. Plenum Press, New York, 1998. [ .ps.gz ]

T. Kaminski. On the benefit of the adjoint technique for inversion of the atmospheric transport employing carbon dioxide as an example of a passive tracer. PhD thesis, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1998. [ .ps.gz | .pdf ]

T. Kaminski, M. Heimann, and R. Giering. A global scale inversion of the transport of CO2 based on a matrix representation of an atmospheric transport model. In R. Baum, I. Enting, R. Francey, M. Hopkins, and P. Holper, editors, Fifth International Carbon Dioxide Conference, pages 147-148. CSIRO Division of atmospheric research, Aspendale, Victoria, Australia, 1997. [ .ps.gz | .pdf ]

T. Kaminski, R. Giering, and M. Heimann. Sensitivity of the seasonal cycle of CO2 at remote monitoring stations with respect to seasonal surface exchange fluxes determined with the adjoint of an atmospheric transport model. Physics and Chemistry of the Earth, 21(5-6):457-462, 1996. [ .ps.gz | .pdf ]

Copyright © FastOpt - all rights reserved