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Using a simple two box model of the atmospheric transport as an example,
an introduction to efficient computation of sensitivities is given. These sen-
sitivities are computed by FORTRAN subroutines applying the forward and
reverse modes of automatic differentiation, i.e. adjoint and tangent linear mod-
els are used. These models are generated automatically from the FORTRAN
code of the transport model by the Tangent linear and Adjoint Model Com-
piler (TAMC). Automatic differentiation and TAMC are briefly introduced.
All necessary preparations of the transport model as well as the usage of the
adjoint and tangent linear models are described in detail. A set of exercises
is provided, some of them need to be run on a computer. The main text,
however, is self contained and can be read without doing the exercises.



1 Introduction

Since a few decades, global station networks are being established to monitor
the concentrations of various atmospheric constituents. The spatio-temporal
variations in observed concentrations of one or more constituents is interpreted
in terms of these constituent’s sources (and sinks). Thereby the relation be-
tween sources and concentrations is simulated by models of the atmospheric
transport. More specifically, for this type of studies, the simulated sensitivity
of the concentration at observational sites and times with respect to the indi-
vidual components of the source fields is used to constrain the sources. In case
a constituent has well known sources, these can be combined to atmospheric
observations either to validate the transport model or to constrain model pa-
rameters that are employed in the formulation of physical processes. For the
latter purpose, the sensitivity of the simulated concentration with respect to
these model parameters is of interest.

Apart from transport modeling, computation of sensitivities is useful to
solve other types of problems in earth sciences (see the contributed papers
in this volume), but also in different scientific disciplines. Using a simple
transport model as an example, this document aims at introducing beginners to
a technique for efficient computation of sensitivities (efficiency is an important
feature, because many current studies, due to the complexity of the models
they use, are limited by computational resources). The basic concept is more
general and can be transferred to compute sensitivities of arbitrary models
(see e.g. Giering, 1998 submitted).

The mathematical representation of the required sensitivities are deriva-
tives of the simulated concentration with respect to sources or model parame-
ters. Starting from the numerical code of the transport model, a second code
for computation of these derivatives is constructed. This task is performed au-
tomatically by another numerical program called Tangent linear and Adjoint
Model Compiler (TAMC, Giering (1997)). This source to source translator
transforms FORTRAN subroutines for evaluation of a function to FORTRAN
subroutines for evaluation of the function’s derivative. Therefore it applies a
technique called automatic differentiation (Griewank, 1989), which is briefly
introduced in section 2. TAMC comes with a utility that, especially for be-
ginners, facilitates the usage of the derivative computing code generated by
TAMC. A brief description of both TAMC and the utility is given in section
3.

As for most of the examples of the optimization chapter, the simple two



box model Boxmod is employed to demonstrate the computation of sensitiv-
ities. Despite its simplicity, Boxmod contains all features that are impor-
tant in the context of computation of sensitivities. Prescribing hemispheric
source estimates provided by Prinn et al. (1992), like in the optimization ex-
amples Boxmod is used to simulate the methyl chloroform concentration in
both hemispheres. In one of the optimization examples, TAMC is applied to
compute sensitivities for Boxmod. Hence the present examples can be consid-
ered as preliminary to the optimization examples. In section 4, Boxmod and
its derivatives are discussed.

This document also comprises a set of exercises. To keep the main text
easy to read for those not interested in all exercises, the exercises are presented
separately in section 5. For those who want to do the exercises, however, at a
specific place in the main text each of the exercises is referred to. The exercises
that involve Boxmod, have to be done numerically. For these exercises source
code has been prepared. For those readers who want to do the exercises but
don’t have access to a computer, the output of the program is included in
figures. More details about the topics introduced in sections 2 and 3 can be
found in Giering and Kaminski (1998) and Giering (1997). In particular when
doing the exercises it is recommended to have these documents available.

2 Automatic Differentiation

Mathematically, transport models can be represented by mappings (or vector
valued functions) transforming a vector of sources or model parameters into a
vector of concentrations. And the sensitivities are represented by the derivative
of this mapping, i.e. by the so called Jacobian matrix of the transport model,
whose entries are the partial derivatives of the components of the concentra-
tion vector with respect to the components of the vector of sources (or model
parameters). The aim of this section is to give a brief introduction into a tech-
nique to compute these derivatives, which is called automatic differentiation,
see Giering and Kaminski (1998) for more details.

There are different approaches for the computation of the abovementioned
partial derivatives: They can be approximated by finite differences, which re-
quires multiple runs of the transport model to simulate the differences in the
concentration resulting from a change of the components of the source vector.
An alternative is the exact computation of the derivatives by automatic dif-
ferentiation: The mapping that represents the transport model is considered



as a composition of a (in general huge) number of individual mappings which
represent the individual steps executed by the transport model. According
to the chain rule the derivative of the mapping that represents the transport
model is the product of the derivatives of the individual mappings. Since the
numerical code of the transport model is simply another representation (in a
programming language) of the original mapping, it can be employed for iden-
tification of the individual mappings. After interpretation of the code in terms
of individual mappings, these are differentiated, and a second code for propa-
gating derivatives according to the chain rule is constructed. Based on a few
principles essentially suggested by Talagrand (1991), Giering and Kaminski
(1998) have derived a few simple rules for identification of the individual map-
pings from the model code and construction of derivative code that operates
in reverse mode (see next paragraph).

The chain rule results in a multiple matrix product, which is associative,
i.e. (numerically, apart from rounding errors) the order in the evaluation of
this product does not matter. Derivative code that evaluates the chain rule
in the same order than the transport model code, is said to be working in
forward mode (tangent linear code), and derivative code that evaluates the
matrix product in the opposite order operates in reverse mode (adjoint code).
Note that, although (apart from rounding errors) the results are the same,
there may be significant differences in the amount of storage and CPU time
required by codes operating in the two modes. The differences depend on the
ratio of the number of input variables (dimension of the vector of sources) to
the number of output variables (dimension of the vector of concentrations).
For a large number of input variables and a small number of output variables,
the reverse mode is more efficient. For a small number of input variables and
a large number of output variables, the forward mode is more efficient. In the
programming exercises are examples in which either mode will be favorable
for computation of the sensitivities that are required to answer the respective
scientific question. Have a look at exercise 1 now!

3 TAMC and TAMLINK

Using the concept of automatic differentiation, the task of constructing adjoint
or tangent linear code can be based on simple rules, like those described in
Giering and Kaminski (1998). These simple rules can be applied automat-
ically, e.g. by source to source translation programs. There are a number



of these programs, e.g. Odyssee (Rostaing et al., 1993), GRESS (Horwedel,
1991), or TAMC ( Giering, 1997) for reverse mode and ADIFOR ( Bischof et al.,
1992) or TAMC for forward mode (see Bischof (URL) for more references).
In this section the program TAMC is introduced. The focus lies on features
that are necessary to understand the examples, for more details see ( Giering,
1997) and (Giering and Kaminski, 1998).

Adjoint and tangent linear codes propagate derivatives. In the case of
adjoint code these derivatives quantify the sensitivity of the output variables
with respect to intermediate results and in the case of tangent linear code
these derivatives quantify the sensitivity of intermediate results with respect
to the input variables. In TAMC there is a one to one correspondence of
variables in the model code to variables in the adjoint (adjoint variables) or
tangent linear code (tangent linear variables), which hold the derivatives ( Gier-
ing and Kaminski, 1998). Those variables that either have no influence on the
output variables or do not depend on the input variables are called passive
variables. For passive variables no derivatives need to be propagated ( Giering
and Kaminski, 1998). In contrast, active variables are those that influence
the output variables and also depend on the input variables. For each active
variable, an adjoint (or tangent linear variable) is declared in the adjoint (or
tangent linear) code, to hold the corresponding derivative. To each statement
in the code in which active variables are involved, according to simple rules,
adjoint (or tangent linear) statements are generated. Exercises exercise 3
and exercise 4 include identification of active variables

Whenever the adjoint and tangent linear statements contain variables from
the model code (e.g. due to non linear operations), those variables are called
required variables, because their values (as right before execution of the state-
ment the derivative statement corresponds to) are required to further propa-
gate the derivatives. In tangent linear code those values can be easily provided
(e.g. by inserting all tangent linear statements in the model code, thereby lo-
cating each tangent linear statement before the statement it corresponds to).
In adjoint code, providing required variables efficiently is one of the major
challenges. Exercises exercise 3 and exercise 4 include identification
of required variables

The TAMC system consists of two parts: a utility that is to be installed
on your local computer and the actual software that does automatic differen-
tiation, which is installed on a remote machine. The source code of the utility
is provided with the code for the exercises. TAMC is invoked by the utility
trough a UNIX shell script tamc, which uses a UNIX remote shell to com-
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municate with the remote machine. Trough command line options, the user
defines the function to be differentiated by naming a FORTRAN subroutine,
its input and output variables as well as the files containing the code to be
differentiated. Section 4 gives two examples for invoking TAMC.

To execute the generated derivative code, it has to be embedded in a main
program. For different applications of derivate code, a software package (TAM-
LINK) comprising a number of main programs is included in the utility. The
code is linked by a second UNIX shell script named tamlink. In order to fit
to the respective main program TAMLINK expects a set of subroutines with

particular names and interfaces. Section 4 gives a number of examples for
invoking TAMLINK.

4 Sensitivities of Boxmod

4.1 Boxmod

Boxmod is a simple two box model of the atmospheric transport. An intro-
duction to box models in general and Boxmod in particular is given in the
optimization chapter. In this document the focus lies on the important de-
tails for automatic differentiation. Despite the simplicity of Boxmod, from
this point of view, many features of the structure of larger, three dimensional
models that are currently used for transport model studies are contained in
Boxmod.

[Figure 1 about here.]

The code of Boxmod is depicted in Figure 1. Using prescribed hemispheric
estimates of the sources of methyl chloroform, which have been provided by
Prinn et al. (1992), and an atmospheric lifetime of 4.7 years (Houweling et al.,
1998), Boxmod is simulating the hemispheric concentrations of methyl chlo-
roform. Boxmod has a (single) transport parameter, namely the rate of in-
terhemispheric mixing mixrate (one of the optimization exercises is to tune
this parameter using sensitivities computed by the adjoint of Boxmod). Un-
like more sophisticated transport models, the transport in Boxmod has neither
seasonality nor interannual variations. The change in the simulated concen-
tration depends non linearly on the mixing rate and, due to the sink term, it
also depends non linearly on the sources. For an inert tracer like COs, i.e. in
the absence of the sink term that depends on the concentration, the change in
the simulated concentration would be linear in the sources.



4.2 Adjoint
[Figure 2 about here.]

[Figure 3 about here.]

This is a good moment to have a look at exercise 2 first and then
at exercise 3. Exercise 3 can be solved by applying TAMC to generate code
for computation of the sensitivity of the concentration in box 1 at the last
time step with respect to the mixing rate, the inverse lifetime, and the source
components (see answer 3). Since the function to be differentiated has one
output variable and many input variables, the reverse mode is most efficient,
i.e. the adjoint of Boxmod is to be constructed. To provide all necessary
information about the function to be differentiated to TAMC:

¢ a subroutine model (see Figure 2), which has in its argument list the
number of input variables, the vector of input variables X, and the output
variable FC, has been constructed,

e and TAMC is called with the options
-module model -input X -output FC -reverse.

A particularly important feature for adjoint code generation, which is typi-
cal for transport models, is that Boxmod overwrites the current concentration
every time step. For applications like exercise 3, in which either the mixing
rate or the inverse lifetime are active variables, the concentration c is one of the
required variables. There are further required variables (or parameters) such
as ny, ntpy, kt2pptv, mixrate, and invlif, but those are not overwritten
and, thus, easy to provide. By default TAMC generates a loop to recompute
the required values of ¢, but TAMC also provides the alternative of storing the
required values on a 'tape’, i.e. in memory or in a file. In Figure 2 the storing
feature is demonstrated, because recomputation would require a second loop
within the adjoint of the main loop (see Giering and Kaminski, 1998; Gier-
ing, 1997), which, computationally, for a three dimensional model would be
prohibitively expensive (see e.g. computational cost of the adjoint of TM2 in
Kaminski et al. (submitted)). Directives are used to make TAMC store and
read the required variables by calling special library routines. First an init
directive is needed to initialize the 'tape’, and then right before the statement
whose adjoint uses the required variable a store directive is inserted (see Fig-
ure 2). Before the adjoint code is executed, the required values are recomputed
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and stored, and during the execution of the adjoint code they are read (see

below).
[Figure 4 about here.]
[Figure 5 about here.]
[Figure 6 about here.]

The adjoint of Boxmod generated by TAMC is depicted in Figures 4 - 6. Figure
4 contains the declaration of required and adjoint variables and the initializa-
tion of the local adjoint variables adc and adcnew to 0. The global adjoint
variable adsrc is initialized by the subroutine adzero. The global adjoint vari-
able adfc has to be initialized to 1 before calling admodel. The initialization
strategy can be understood as a consequence of the concept of locality (for
details see definition of locality in Giering and Kaminski, 1998): The current
values of adjoint variables reflect the derivative of fc with respect to the vari-
able in the forward mode the adjoint variable corresponds to. Thereby current
refers to the place in the code of Boxmod where the statement to which the
adjoint statement corresponds is located. Since admodel runs in reverse mode,
the end of model is the location the initialization part of admodel corresponds
to. And at the end of model, only a change in the variable fc could change the
function value, all others don’t have any impact anymore. Hence their adjoints
must be 0. The adjoint computations part in admodel (see Figure 5) updates
the values of the adjoint variables by executing the adjoints of the statements
(see Giering and Kaminski, 1998) in model in reverse order. At the end of
admodel the adjoint of x holds the derivative of fc with respect the x, and all
other adjoint variables hold Os.

As discussed above, the correct values of most of the required variables
are easy to provide. For instance the values of mixrate and invlif can be
recovered from x at the beginning of the adjoint computations part. The
computation of c is carried out during computation of the value of the function,
which TAMC adds by default before the adjoint computations, since it is
needed e.g. for use in optimization procedures (generation of code for the
value of the function can be avoided by using the directive -pure). Reading
and writing and the necessary bookkeeping are organized by the subroutines
adstore and adresto.

[Figure 7 about here.]
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[Figure 8 about here.]
[Figure 9 about here.]

To actually compute the sensitivity needed to answer exercise 3, admodel has to
be executed using the correct values of the input variables, i.e. sources, inverse
lifetime, and mixing rate. The subroutine can be executed easily after linking
the appropriate main program for computing sensitivities by TAMLINK. This
main program requires that, besides model, three subroutines be provided:

e a subroutine numbmod defining the number of input variables (see Figure

7),

e a subroutine initmod doing all necessary initialization, in particular set-
ting the values of the input variables (see Figure 8),

e and a subroutine postmod doing the post processing (see Figure 9).

To link the main program for computation of the sensitivity in reverse mode,
TAMLINK is to be invoked with the command line option -adjoint.

4.3 Tangent linear model

[Figure 10 about here.]

This is a good moment to have a look at exercise 4. exercise 4 can be
solved by applying TAMC to generate code for computation of the sensitivity
of the concentration in both boxes and all years with respect to the inverse
lifetime and the mixing ratio (see answer 4). Since the function to be differen-
tiated has two input variables and many output variables, the forward mode
is most efficient, i.e. the tangent linear of Boxmod is to be constructed. To
provide all necessary information about the function to be differentiated to

TAMC

e a subroutine func (see Figure 10), which has in its argument list the
number of input variables, the vector of input variables X, the number of
output variables, and the output variable Y has been constructed,

¢ and TAMC is called with the options
-module func -input X -output Y -ldg -jacobian 20 -forward
(the -jacobian option sets the number of output variables, default is one
and the -1dg extends the parameter list of g_func).
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[Figure 11 about here.]
[Figure 12 about here.]

The tangent linear code of Boxmod is depicted in Figures 11 and 12. The
tangent linear variables are marked by the prefix g_. Recall that they hold the
derivative of the (active) variable they correspond to with respect to the input
variable x. Figure 4 contains the declaration of forward code and tangent
linear variables. Note that unlike adjoint variables, tangent linear variables
do not have to be initialized, because, except for the tangent linear variables
corresponding to the input variable x, they are not referenced before being
set by at least one tangent linear statement in g_func. Each statement from
the function evaluation is preceded by its tangent linear statement. Thanks
to this scheme, correct values of all required variables are readily provided.
As a comfortable side effect, tangent linear code is much better readable than
adjoint code. While the function part of _g computes y, the derivative part
computes g_y

[Figure 13 about here.]
[Figure 14 about here.]
[Figure 15 about here.]

As for the adjoint code, to actually compute the sensitivity needed to an-
swer exercise 4, g_func has to be executed using the correct values of the input
variables, i.e. sources, inverse lifetime, and mixing rate. The subroutine can
be executed easily after linking the appropriate main program for computing
sensitivities by TAMLINK. This main program requires that, besides func,
three subroutines be provided:

¢ a subroutine setfunc defining the number of input and output variables
(see Figure 13),

e a subroutine initfunc doing all necessary initialization, in particular
setting the values of the input variables (see Figure 14),

e and a subroutine postfunc doing the post processing (see Figure 15).

Note that unlike the scalar valued function of the previous example, here a
vector valued function has been differentiated, which is the reason for the
differences in the argument lists of the subroutines. To link the main program
for computation of the sensitivity in forward mode, TAMLINK is to be invoked
with the command line option -forward.
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Exercises

Questions

. Imagine you have a simple transport model, and for computing the

derivative you need, the mapping defined by your transport model can
be decomposed to only four individual mappings (i.e. the code of your
transport model is indeed very simple). Their respective Jacobians are
(in the order of the transport model using the convention <number of
rows> X <number of columns>) 2x5, 3x5, 3x3, and 1x3 matrices, i.e.
the derivative of the transport model is a 1x5 matrix.

(a) Make a drawing of the matrix product and of its evaluation in for-
ward and reverse modes!

(b) What is the largest matrix needed to hold a (n intermediate) result
in forward and reverse modes?

(c) How many additions and multiplications are needed for the evalua-
tion of the product in forward and reverse modes?

Compile and run boxmod (boxmod is in file boxmod_0.F).

Imagine you perform a unit change of the mixing rate, the inverse life-
time, or any of the source components. Which change (to first order,
since we want to use first derivatives) has the largest impact on the sim-
ulated concentration in box 1 at the end of year 10 (this is an application
for reverse mode)?

Which are the active variables?

Which are the required variables?

Detailed instructions:

(a) Transform the code in boxmod_0.F to a form that defines the con-
centration at the end of year 10 as a function (in the code: sub-
routine) of all sources (and thus can be recognized by TAMC) and
that can be recognized by TAMLINK. Having a look in the directory
../tamc/examples might help!

(b) Invoke ’tamlink -cost’ to check whether this modified code runs and
computes the correct value for the concentration in year 10!

(c) Invoke TAMC to compute the derivate of this function!
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(d) Check this derivative against finite differences by using ’tamlink
-check’!

(e) Run the adjoint code by using tamlink -adjoint’!

4. The concentration in which box and year will be strongest effected by a
unit change of the inverse lifetime or the mixing ratio (this is an appli-
cation for forward mode)?

Which are the active variables?
Which are the required variables?
Detailed instructions:

(a) Transform the code in boxmod_0.F to a form that defines the con-
centration in all years and both boxes as a function (in the code:
subroutine) of both sources in the first year (and thus can be rec-
ognized by TAMC) and which can be recognized by TAMLINK.
Having a look in the directory ../tamc/examples might help!

(b) Invoke TAMC to compute the derivate of this function!

(c) Check this derivative against the derivative computed in reverse
mode by using 'tamlink -compare’!

5.2 Answers

For most of the numerical exercises targets for 'make’ and code have been
prepared. In this case you’ll get the answer by entering 'make <target>’.
Most of the answers are discussed in the main text, right after the reader is
asked to do the exercise.

[Figure 16 about here.]
[Figure 17 about here.]
[Figure 18 about here.]

1. (a) Have a look at Figure 16!

(b) In forward mode it is the 3x5 matrix after the first product has
been evaluated, and in reverse mode it is the 1x5 matrix holding
the final result.
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(c) In forward mode, the number of multiplications is:

Ny = 3X2XDH
4+ 3x3x5
4+ 1x3x5
= 90,

and the number of additions is:

ng = 3X2—1x5 (1)
+ 3x3—-1x5 (2)
+ 1x3—-1x5 (3)
= b55. (4)

In reverse mode, the number of multiplications is:

Ny, = 1X3X3
4+ 1x3x2
+ 1x2x5
= 25,

and the number of additions is:

ng = 1x3—1x%x3
+ 1x3—-1x2
+ 1x2—-1x5
= 15.

2. Enter: 'make run’!

3. The active variables are x, mixrate, invlif, src, c_new, c,and fc.
The required variables are ¢, ny, ntpy, kt2pptv, mixrate, and invlif.

(a) Have a look at Figures 2 and 7 - 9!
(b) Enter: 'make cost’!
(c) Enter: 'make boxmod-1_ad.f’!
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(d) Enter: 'make check’!

(e) Enter: 'make adjoint’ or have a look at Figure 17!

A unit change of the inverse lifetime has the largest impact on the sim-
ulated concentration in box 1 at the end of year 10 (—424 pptv x year).
Note that the answer depends on what units we choose for the input and
output variables!

4. The active variables are x, g_p-, mixrate, invlif, c_new, c,andy.
The required variables are ¢, ny, ntpy, kt2pptv, mixrate, and inv1if.

(a) Have a look at Figure 10!
(b) Enter: 'make forward’ or have a look at Figure 18!

(c) Enter: 'make jacobian’!

The concentration in box 1 after year 10 is effected strongest by a unit
change of the inverse lifetime ((—424 pptv x year). The concentrations
in both boxes after year 10 are effected equally strong by a unit change
of the mixing rate (+10.4 pptv X year). This time the answers does not
depend on the units chosen.
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program boxmod
implicit none

c parameters
integer ny ! number of years
integer ntpy ! number of time steps per year
parameter (ny=10,ntpy=50)
real src(2,ny) ! sources
real mixrate, invlif ! 1/mixing rate; 1/life time
real kt2pptv ! conversion source to concentration
integer i,1 ! loop counters
real c(2),cnew ! concentrations
integer y ! year of source
real srcm,srcs,tot ! percentages in nh and sh, total in kt

c initialize sources

c read three comment lines plus the 1977 record,

c i.e. start with the 1978 sources
open(unit=1,file=’src_CH3CC13.4d’,status=’0ld’)
read(1,°(////)?)
do i=1,ny

read(1,’(8x,i4,2(£6.3),f6.1)°) y,srcm,srcs,tot
src(1,i) =srcm*tot
src(2,i) =src_s*tot

end do
close(1)
c initialize transport and sink
mixrate = 1. ! mixing rate in 1/year
invlif = 1./4.7 ! invers lifetime in 1/year

! sander houweling found 4.7 years
c conversion for kt to pptv within a hemisphere
kt2pptv = 0.471 * 2 * 12/133.5
c initialize concentration with values for 1978

c(1) = 84. ! northern box
c(2) = 60. ! southern box
¢ output

write(*,’(ab0)’) ’The simulated concentration is : °’
write(*,’(a10,2(a20))’),’year’, ’boxl’, ’box2’
write(*,’(i10,2(12x,f8.4))’)

0,c(1),c(2)

c calculate concentrations with forward differencing box model
c and add contribution to misfit function every year
¢ (cnew stores the new value of c(1) because the old is need for
c computation of c(2) )
do i=1,ny
do 1=1,ntpy
cnew = c(1) + 1./ntpy *
( kt2pptv*src(l,i) - (c(1)-c(2))
* mixrate - invlif*c(1) )
c(2) = c(2) + 1./ntpy *
( kt2pptv*src(2,i) - (c(2)-c(1))
* mixrate - invlif*c(2) )
c(1) = cnew
enddo
c output

write(*,’(i10,2(12x,f8.4))’)
. i,e(1),c(2)

enddo
end

Figure 1: The code of Boxmod.



c -
C The subroutine "MODEL" is called by the optimization procedure.
C It has to calculate the cost function "FC"

C depending on the control vector "X(N)".

C

SUBROUTINE MODEL( N, X, FC )
implicit none

INTEGER N

REAL X(N), FC

#include "boxmod.h"
integer i,j,1 ! loop counters
real c(2),cnew ! concentrations

c tamc directive to initialize a tape for the trajectory
c cadj init tapel = ’trajectory’

c alternatively memory can be used

cadj init tapel = MEMORY

c copy control variables
mixrate = x(1)
invlif = x(2)

do i=1,ny

do j=1,2

src(j,i)=x(2+i+(j-1)*ny)

enddo

end do
c initialize concentration with values for 1978

c(1) = 84. ! northern box
c(2) = 60. !  southern box

c calculate concentrations with forward differencing box model
c and add contribution to misfit function every year
c (cnew stores the new value of c(1) because the old is need for
c computation of c(2) )
do i=1,ny
do 1=1,ntpy

cadj store ¢ = tapel
cnew = c(1) + 1./ntpy *
( kt2pptv*src(1,i) - (c(1)-c(2))
* mixrate - invlif*c(1) )

c(2) = c(2) + 1./ntpy *
( kt2pptv*src(2,i) - (c(2)-c(1))
* mixrate - invlif*c(2) )
c(1) = cnew
enddo
enddo
c set output variable
fc=c(1)

END

Figure 2: Subroutine model defining the function to be differentiated in ex-
ercise 3. The subroutine has been constructed by rearranging the code of
Boxmod. The header file boxmod.h is depicted in Figure 3.



¢ header file for boxmod

c parameters
integer ny ! number of years
integer ntpy ! number of time steps per year
parameter (ny=10,ntpy=50)

¢ variables

real src(2,ny) ! sources
real mixrate, invlif ! 1/mixing rate; 1/life time
real kt2pptv ! conversion source to concentration
common /vars / mixrate, invlif, src, kt2pptv

c

c values of control variables:
real src0(2,ny) ! sources
real mixrateO, invl1ifO ! 1/mixing rate; 1/life time

common /cvars / mixrateO, invlif0O, srcO

Figure 3: Header file boxmod.h for subroutines numbmod, model, initmod
and postmod.



subroutine admodel( n, x, fc, adx, adfc )
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C** This routine was generated by the *x*
C** Tangent linear and Adjoint Model Compiler, TAMC 4.97 *x*
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implicit none

C
C define parameters
C
integer ntpy
parameter ( ntpy = 50 )
integer ny
parameter ( ny = 10 )
C
C define common blocks
C
common /advars/ admixrate, adinvlif, adsrc
real adinvlif, admixrate, adsrc(2,ny)
common /vars/ mixrate, invlif, src, kt2pptv
real invlif, kt2pptv, mixrate, src(2,ny)
C
C define arguments
C
integer n
real adfc, adx(n), fc, x(n)
C
C define local variables
C
real adc(2), adcnew, c(2), cnew
integer i, ipl, j, 1
C
C RESET GLOBAL ADJOINT VARIABLES
C
call adzero
C
C RESET LOCAL ADJOINT VARIABLES
C
do ip1 =1, 2
ade(ipl) = 0.
end do

adcnew = O.

Figure 4: The adjoint and modified forward codes of Boxmod, declaration and
initialization of adjoint variables. TAMC output has been slightly edited to fit
better in the figure.



C

C ROUTINE BODY

C
C

C FUNCTION AND
C

TAPE COMPUTATIONS

mixrate =

invlif =

doi=1,

do j =

src(

end do
end do

x(1)

x(2)

ny
1, 2
j,1i) = x(2+i+(j-1)#*ny)

c(1) = 84.

c(2) = 60

doi-=1,

do 1 =

call

cnew

c(2)

c(1)

end do
end do

fc = c(1)

ny

1, ntpy

adstore( ’memory_1 modelc’,16,c,8,2,1+((-1)+i)*ntpy+1-1)

= c(1)+1./ntpy* (kt2pptv*src(1l,i)-(c(1)-c(2))*mixrate-invlif*c(1))
c(2)+1. /ntpy* (kt2pptv*src(2,i)-(c(2)-c (1)) *mixrate-invlif*c(2))
= cnew

C
C ADJOINT COMP
C

UTATIONS

mixrate =
invlif =
adc(1) =
adfc =
do i = ny
do 1 =
call

o

x(1)
x(2)
adc(1)+adfc

s 1, -1
ntpy, 1, -1
adresto( ’memory_1 modelc’,16,c,8,2,1+((-1)+i)*ntpy+1-1 )

adcnew = adcnew+adc(1)

adc(

1) = 0.

adinvlif = adinvlif-adc(2)#1./float(ntpy)*c(2)

admi

xrate = admixrate-adc(2)*1./float(ntpy)*(c(2)-c(1))

adsrc(2,i) = adsrc(2,i)+adc(2)*1./float (ntpy)*kt2pptv

adc (
adc(
adc (
adc(

1) = adc(1)+adc(2)*1./float(ntpy)*mixrate

2) = adc(2)*(1-1./float(ntpy)* (mixrate+invlif))

2) = adc(2)+adcnew*1./float(ntpy)*mixrate

1) = adc(1)+adcnew*(1-1./float (ntpy)* (mixrate+invlif))

adinvlif = adinvlif-adcnew#1./float(ntpy)*c(1)

admi

xrate = admixrate-adcnew*1./float(ntpy)*(c(1)-c(2))

adsrc(1,i) = adsrc(1,i)+adcnewx1./float(ntpy)*kt2pptv
adcnew = 0.

end do
end do
adc(2)
adc(1)
doi-=1,
do j =
adx (

0.
0.

ny

1, 2

2+i+(j-1)*ny) = adx(2+i+(j-1)*ny)+adsrc(j,i)

adsrc(j,i) = 0.

end do
end do
adx(2) =
adinvlif
adx(1) =

adx(2)+adinvlif
= 0.
adx (1) +admixrate

admixrate = 0.

end

Figure 5: The adjoint and modified forward codes of Boxmod, function compu-

tation inclu

ding computation and storing of ¢ as well as adjoint computations

including reading of c. TAMC output has been slightly edited to fit better in

the figure.



subroutine adzero
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C+* This routine was generated by the *x*
C** Tangent linear and Adjoint Model Compiler, TAMC 4.97 *x*
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implicit none

C
C define parameters
C
integer ny
parameter ( ny = 10 )
C
C define common blocks
C
common /advars/ admixrate, adinvlif, adsrc
real adinvlif, admixrate, adsrc(2,ny)
C
C define local variables

integer ipl, ip2

admixrate = 0.

adinvlif = 0.

do ip2 = 1, ny
do ipl1 =1, 2

adsrc(ipl,ip2) = 0.

end do

end do

end

Figure 6: The adjoint and modified forward codes of Boxmod, subroutine
adzero for initialization of global adjoint variables. TAMC output has been
slightly edited to fit better in the figure.



¢ -
C This subroutine sets the number

C of control variables
C

SUBROUTINE NUMBMOD( N )
implicit none
#include "boxmod.h"
INTEGER N
n = 2+2*%ny

END

Figure 7. Code of Subroutine numbmod. numbmod is one of the subroutines
needed by TAMLINK to link admodel to a main program for computation of
the sensitivity. The header file boxmod.h is depicted in Figure 3.



The subroutine "INITMOD" is called before the
optimization. It must set a first guess

of the parameter vector.

It may also contain the initialization of

the model.

aaoaaoaaaaQ

SUBROUTINE INITMOD( N, X )
implicit none

INTEGER N
REAL X(N)
#include "boxmod.h"

integer i, j ! loop counter
integer y ! year of source
real srcmn,srcs,tot ! percentages in nh and sh, total in kt

¢ initialize sources
c read three comment lines plus the 1977 record,
c i.e. start with the 1978 sources
open(unit=1,file=’src CH3CC13.4’,status=’0ld’)
read(1,°(////)?)
do i=1,ny
read(1,’(8x,i4,2(£6.3),f6.1)°) y,srcmn,src.s,tot
src0(1,i) =srcn*tot
src0(2,i) =src_s*tot

end do

close(1)

c initialize transport and sink
mixrateO = 1. ! mixing rate in 1/year
invlif0 = 1./4.7 ! invers lifetime in 1/year
! sander houweling found 4.7 years

conversion for kt to pptv within a hemisphere
we use 0.471 to transform from
gigatons of carbon in co2 to ppmv in the entire atmosphere
the ratio of the molecular weights of carbon and CH3CC13
should be something like 12/133.5
replacing Gt by kt and ppmv by pptv cancels out

kt2pptv = 0.471 * 2 * 12/133.5

o 00 o000

c set first guess of (potential) control vars

x(1) = mixrate0
x(2) = invlifo
do i=1,ny

do j=1,2

x(2+i+(j-1) *ny)=src0(j,i)

enddo
end do
END

Figure 8: Code of Subroutine initmod. initmod is one of the subroutines
needed by TAMLINK to link admodel to a main program for computation of
the sensitivity. The header file boxmod.h is depicted in Figure 3.



C
C The subroutine "POSTMOD" is called after

C the optimization.

C It should contain the output of the results.
C

SUBROUTINE POSTMOD( N, X, FC, ADX )
implicit none

INTEGER N
REAL X(N), FC, ADX(N)
INTEGER I

#include "boxmod.h"
write(*,’(a25,3(2x,f13.4))°)
>The value of fc is : ’,fc
write(*,’(a25)’) ’Its derivatives are : °’
write(*,’(ab5,1(2x,£f13.4))°)

’with resp. to mixing rate : ’, adx(1)
write(*,’(ab5,1(2x,f13.4))’)
’with resp. to inv. 1lifetime : °’, adx(2)

write(*,’(abb)’) ’with resp. to sources : ’
write(*,’(a10,2(a30))’),’year’, ’boxl’,’box2’
do i=1,ny

write(*,’(i10,2(22x,£8.4))°)
. i,adx(2+i),adx(2+i+ny)
end do
END

Figure 9: Code of Subroutine postmod. postmod is one of the subroutines
needed by TAMLINK to link admodel to a main program for computation of
the sensitivity. The header file boxmod.h is depicted in Figure 3.



¢ -
C This is the top level routine,

C it has to calculate the dependent variables Y(M)
C out of the independent variables X(N)

C

SUBROUTINE FUNC( N, X, M, Y )
INTEGER N, M
REAL X(N), Y(M)

#include "boxmod.h"
integer i,j,1 ! loop counters
real c(2),cnew ! concentrations

c tamc directive to initialize a tape for the trajectory
c¢ (adjoint code is generated to check tangent linear code)
c cadj init tapel = ’trajectory’
c alternatively memory can be used
cadj init tapel = MEMORY
c copy control variables
mixrate = x(1)
invlif = x(2)
c initialize concentration with values for 1978
c(1) = 84. ! northern box
c(2) = 60. !  southern box

c calculate concentrations with forward differencing box model
c and add contribution to misfit function every year
¢ (cnew stores the new value of c(1) because the old is need for
c computation of c(2) )
do i=1,ny
do 1=1,ntpy

cadj store ¢ = tapel
cnew = c(1) + 1./ntpy *
( kt2pptv*src(l,i) - (c(1)-c(2))
* mixrate - invlif*c(1) )
c(2) + 1./ntpy *
( kt2pptv*src(2,i) - (c(2)-c(1))
* mixrate - invlif*c(2) )
c(1) = cnew
enddo
c save output
do j=1,2
y(G+E-1)*2) = c(j)
enddo
enddo
END

c(2)

Figure 10: Subroutine func defining the function to be differentiated in exercise
4. The subroutine has been constructed by rearranging the code of Boxmod.
The header file boxmod.h is depicted in Figure 3.



subroutine g_func( n, x, m, y, gp-, gx, 1ldx, gy, 1ldy )
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C** This routine was generated by the **
C** Tangent linear and Adjoint Model Compiler, TAMC 4.97 *x*
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implicit none
C
C define parameters
C

integer g-pmax

parameter ( g_pmax = 20 )

integer ntpy

parameter ( ntpy = 50 )

integer ny

parameter ( my = 10 )
C
C define common blocks
C

common /g vars/ gmixrate, g_invlif

real g-invlif(gpmax)

real g mixrate(gpmax)

common /vars/ mixrate, invlif, src, kt2pptv

real invlif

real kt2pptv

real mixrate

real src(2,ny)
C
C define arguments
C

integer g.p-
integer 1ldx
integer 1ldy
integer m
integer n
real g x(ldx,n)
real g y(ldy,m)
real x(n)
real y(m)
C
C define local variables
C

real c(2)

real cnew

real g_c(gpmax,2)
real g_cnew(gpmax)
integer g-i-
integer i

integer j

integer 1

C
C CHECK PACT LOWER EQUAL PMAX
C

if (gp- .gt. g-pmax) then
stop ’error : pact is greater than pmax’
endif

Figure 11: The tangent linear and forward code of Boxmod, declaration and
initialization of tangent linear variables. TAMC output has been slightly edited
to fit better in the figure.



C
C TANGENT LINEAR AND FUNCTION STATEMENTS
C

do gi_=1, gp_
gmixrate(gi.) = gx(gi_,1)
end do
mixrate = x(1)
do g-i- =1, gp-
g-invlif(gi.) = gx(g-i_,2)
end do
invlif = x(2)
do gi_.=1, gp_
gc(gi-,1) = 0.
end do
c(1) = 84.
do gi_ =1, gp-
gc(gi_,2) = 0.

end do
c(2) = 60.
do i =1, ny
do 1 = 1, ntpy

dogi_=1, gp_
gcnew(gi_) = gc(g-i_,2)*1./float(ntpy)*mixrate+gc(gi_,
$1)*(1-1./float (ntpy) * (mixrate+invlif))-ginvlif(gi_)*1./
$float (ntpy)*c(1)-gmixrate(gi_)*1./float(ntpy)*(c(1)-c(2))
end do
cnew = c(1)+1./ntpy*(kt2pptv*src(1,i)-(c(1)-c(2))*mixrate-invlif*c(1))
dogi_ =1, gp_
gc(gi_,2) = ge(gi-,2)*(1-1./float(ntpy)*(mixrate+invlif)
$)+gc(gi_,1)*1./float(ntpy)*mixrate-g invlif(gi_)*1./float(ntpy)
$*c(2)-gmixrate(gi_)*1./float(ntpy)*(c(2)-c(1))
end do
c(2) = c(2)+1./ntpy*(kt2pptv*src(2,i)-(c(2)-c(1))*mixrate-invlif*c(2))
do g-i- =1, gp-
gc(gi-,1) = gcnew(gi.)
end do
c(1) = cnew
end do
doj=1, 2
do g-i- =1, g-p-
gy(g-i_,j+(i-1)*2) = gc(gi-,j)
end do
y(G+@E-1)%2) = c(j)
end do
end do
end

Figure 12: The tangent linear and forward code of Boxmod, function and
tangent linear computations. TAMC output has been slightly edited to fit
better in the figure.



c =
C This subroutine sets the number

C of independent and dependent variables

C

SUBROUTINE SETFUNC( N, M )
implicit none

#include "boxmod.h"
INTEGER N, M

n =2
m = 2*ny
END

Figure 13: Code of Subroutine setfunc. setfunc is one of the subroutines
needed by TAMLINK to link g_func to a main program for computation of
the sensitivity. The header file boxmod.h is depicted in Figure 3.



C
C The subroutine INITFUNC
C must set the independent variables
c =
SUBROUTINE INITFUNC( N, X )
implicit none

INTEGER N
REAL X(N)
#include "boxmod.h"

integer i ! loop counter
integer y ! year of source
real srcn,srcs,tot ! percentages in nh and sh, total in kt

c initialize sources
c read three comment lines plus the 1977 record,
c i.e. start with the 1978 sources
open(unit=1,file=’src CH3CC13.d’,status=’0ld’)
read(1,’(////)?)
do i=1,ny
read(1,’(8x,i4,2(£6.3),f6.1)°) y,srcmn,src.s,tot
src(1,i) =src_n*tot
src(2,i) =src_s*tot

end do

close(1)

c initialize transport and sink
mixrate0 = 1. ! mixing rate in 1/year
invlifO = 1./4.7 ! invers lifetime in 1/year
! sander houweling found 4.7 years

c conversion for kt to pptv within a hemisphere
c we use 0.471 to transform from
c gigatons of carbon in co2 to ppmv in the entire atmosphere
¢ the ratio of the molecular weights of carbon and CH3CC13
¢ should be something like 12/133.5
c replacing Gt by kt and ppmv by pptv cancels out
kt2pptv = 0.471 * 2 * 12/133.5

c set first guess of control vars
x(1) = mixrate0
x(2) = invl1ifo
END

Figure 14: Code of Subroutine initfunc. initfunc is one of the subroutines
needed by TAMLINK to link g_func to a main program for computation of
the sensitivity. The header file boxmod.h is depicted in Figure 3.



C

C The subroutine "POSTFUNC" is called at last

C It should contain the output of the results.

c =
SUBROUTINE POSTFUNC( N, X, M, Y, GDX, LDX )
implicit none

INTEGER N, M, LDX
REAL X(N), Y(M), GDX(LDX,M)

#include "boxmod.h"

integer i ! loop counters

write(*,’(a26)’) ’The sensitivities are : °’
write(*,’(a10,2(a20))’),’year’,’c boxl’,’c box2’
write(*,’(a10,4(a10))’),’ ’,
. ‘mixrate’,’1/lifet’,’mixrate’,’1/lifet’
do i=1,ny

write(*,’(i10,4(2x,£8.2))’)
i,gdx(1,1+(i-1)%2),gdx(2,1+(i-1)%2),
. gdx (1,2+(i-1)#%2) ,gdx(2,2+(i-1)*2)
end do

END

Figure 15: Code of Subroutine postfunc. postfunc is one of the subroutines
needed by TAMLINK to link g_func to a main program for computation of
the sensitivity. The header file boxmod.h is depicted in Figure 3.



Forward mode
X X X X X X X X X X
coxoa xR ][R xR R
X X X X X X X X
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Rever se mode
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Figure 16: Example of forward and reverse mode illustrating the differences in
the storage requirements and in the number of operations: The same matrix
product, whose result has 1 row and 5 columns, is evaluated in forward mode,
i.e. from right to left (top), and in reverse mode, i.e. from left to right
(bottom). In forward mode the matrices holding the intermediate results have
5 columns, while in reverse mode they have 1 row.



COMPUTATION OF FUNCTION AND DERIVATIVES
IN REVERSE MODE

The value of fc is : 125.8274
Its derivatives are :
with resp. to mixing rate : -10.3982
with resp. to inv. lifetime : -424.1904
with resp. to sources :
year box1 box2
1 0.0056 0.0056
2 0.0069 0.0069
3 0.0086 0.0086
4 0.0106 0.0106
5 0.0132 0.0132
6 0.0163 0.0163
7 0.0202 0.0201
8 0.0251 0.0248
9 0.0327 0.0291
10 0.0554 0.0211

Figure 17: Sensitivities computed by adjoint model to Boxmod.



COMPUTATION OF FUNCTION AND JACOBIAN
IN FORWARD MODE

The sensitivities are :
year ¢ box1 ¢ box2
mixrate 1/lifet mixrate 1/lifet

1 806 -T71.67 8.06 -63.61
2 864 -131.99 8.64 -123.34
3 -8.77 -185.58 8.77 -176.81
4 -8.49 -232.22 8.49 -223.73
5 854 -272.68 8.54 -264.15
6 -9.12 -308.90 9.12 -299.78
7 -9.44 -341.67 9.44 -332.23
8 -9.53 -371.27 9.53 -361.74
9 981 -398.41 9.81 -388.60
10 -10.40 —424.19 10.40 -413.79

Figure 18: Sensitivities computed by tangent linear model to Boxmod.



