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[1] We present a computer-efficient software package enabling us to assimilate
operational remote-sensing flux products into a state-of-the-art two-stream radiation
transfer scheme suitable for climate models. This package implements the adjoint
and Hessian codes, generated using automatic differentiation techniques, of a cost function
balancing (1) the deviation from the a priori knowledge on the model parameter values
and (2) the misfit between the observed remote-sensing fluxes and the two-stream model
simulations. The individual weights of these contributions are specified notably via
covariance matrices of the uncertainties in the a priori knowledge on the model parameters
and the measurements. The proposed procedure delivers a Gaussian approximation of the
PDFs of the retrieved model parameter values. The a posteriori covariance matrix is
further exploited to evaluate, in turn, the posterior probability density functions of the
radiant fluxes simulated by the two-stream model, including those that are not
measured, for example, the fraction of radiation absorbed in the ground. Applications are
conducted using Moderate Resolution Imaging Spectroradiometer (MODIS) and
Multiangle Imaging Spectroradiometer (MISR) broadband surface albedo products. It
turns out that the differences between these two albedo sets may translate into discernible
signatures on some retrieved model parameters. Meanwhile, adding the Joint Research
Centre (JRC)-Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) products into the measurements yields
a significant reduction of uncertainties. Results from these applications indicate that the
products retrieved from the two-stream inversion procedure (1) exhibit much less
variability than those generated by the operational algorithms for the LAI and FAPAR, and
(2) are in good agreement with the available ground-based estimates.
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1. Introduction

[2] The availability from various institutions of global
multiannual time series of surface products derived from
space-borne sensors operating in the solar domain incites
considering their genuine use in climate and large-scale
models. A number of steps are, however, required to favor
the systematic ingestion or assimilation of the remote-
sensing products by these models. Those steps include, at
least, (1) the assessment of the variability between products
available from different sources which requires performing

product intercomparison exercises [e.g., Pinty et al., 2004b],
(2) the evaluation of the absolute accuracy on the retrievals
implying, whenever possible, joint analyses of the remote-
sensing and the ground-based estimates [e.g., Jin et al.,
1999; Shabanov et al., 2003; Gobron et al., 2006], (3) the
verification that the remote-sensing products actually fit the
needs and expectations of the large-scale models regarding
the spatial and temporal coverage [Moody et al., 2005]
which suggest achieving the fusion of products delivered by
multiple sources when the former are shown to be indis-
cernible [Salomon et al., 2006], (4) the evaluation of the
performances of the land surface radiation schemes current-
ly implemented in large-scale models that may now require
intensive benchmarking against more sophisticated tools
[e.g., Anisimov and Fukshansky, 1992; Yang et al., 2001;
Niu and Yang, 2004; Wang, 2005; Pinty et al., 2006], and
(5) the availability of advanced and computer-efficient
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assimilation procedures to facilitate the interfacing between
the surface products measured from space and the
corresponding quantities generated or required by land
surface schemes. Results from preliminary attempts at
addressing the first three items mentioned previously are
encouraging enough, so that items 4 and 5 are becoming
fully relevant topics to address.
[3] The three surface products retrieved from remote-

sensing techniques that are of concern here are as follows:
(1) the fraction of the radiant flux scattered by the surface,
namely, the albedo in the broadband visible (0.3–0.7 mm)
and near-infrared (0.7–3.0 mm) spectral domains, (2) the
fraction of the radiant flux absorbed by the green part of
vegetation canopies in the broadband visible domain, namely,
the Fraction of Absorbed Photosynthetically Active Radia-
tion (FAPAR), and (3) a state variable of the vegetation
canopy, namely, the Leaf Area Index (LAI). Such products
are derived from series of instruments operated by major
space agencies and are available from various sources (see,
for instance, http://envisat.esa.int, http://eosweb.larc.nasa.
gov/, http://edcdaac.usgs.gov/, http://www.eumetsat.int/,
and http://fapar.jrc.it/). These three surface products are of
high relevance for analyzing and simulating exchange
processes of energy and mass occurring through the upper
and lower boundaries of a vegetation canopy layer.
[4] Revisiting the characteristics and performances of

land surface radiation schemes currently implemented in
climate and large-scale models must ideally meet numerous
technical constraints (like computer efficiency and robust-
ness, limited implementation, and maintenance costs) and
scientific constraints (such as reaching simulation accuracy
for radiant fluxes at least comparable, although ideally an
order of magnitude better, to that associated with the
retrieved estimates from remote sensing). The corresponding
efforts should thus take place on at least two complementary
fronts: (1) updating and eventually modifying the current
radiation schemes in the vegetation layer to make them easy
to couple, without dramatic increase in software mainte-
nance cost, with the multilayer representation of the atmo-
sphere and soil systems, and (2) improving the capability to
represent reliably the effects due to the unresolved internal
variability (along the horizontal and vertical directions) of
the land surface properties such as, for instance, the leaf area
density.
[5] Accounting for the three-dimensional effects due to

vegetation clumping and tree structure in large-scale models
is at the core of the problem to be solved. So far,
indeed, the most advanced representation of the interac-
tions between the solar radiation and vegetation canopy
attributes relies on solutions, sometimes approximate,
derived from one-dimensional approaches. Steps have
been taken to propose alternate, mostly hybrid, solutions
recognizing the importance of the departure from hori-
zontal homogeneity which translates into significant
modifications of the downward transmitted, upward scat-
tered, and hence finally absorbed, radiant fluxes in the
vegetation layer and the soil underneath. Since the two
latter fluxes are those estimated operationally from space-
borne sensor measurements, large-scale models will be able
to fully capitalize on these estimations only to the extent
that (1) they adequately represent the three-dimensional
effects generated by the internal variability prevailing

inside the vegetation layer and 2) the required information
to simulate/parameterize this internal variability is available
in some ways.
[6] Pinty et al. [2006] have shown that the two-stream

representation used to simulate the radiant fluxes in vege-
tation layers at low spatial resolution is always capable of
mimicking three-dimensional induced effects provided that
effective (instead of true) variable values are adopted. In
other words, a solution to a three-dimensional flux problem
satisfying the conditions imposed by a ‘‘radiatively inde-
pendent volume’’ [Pinty et al., 2004a] has always its
equivalent in the one-dimensional representation but at the
cost of parameterizing the state variables of the radiation
transfer problem in order to ensure the correct balance
between the scattered, transmitted, and absorbed radiant
fluxes. As a consequence, the two main radiant fluxes
available nowadays operationally, i.e., the fractions of
scattered and absorbed radiant fluxes, cannot be used
together with the retrieved, allometric and presumably true,
values of a major state variable, namely, LAI, since this
yields an erroneous assessment of the redistribution of
energy within the vegetation layer. This problem can,
however, be addressed by retrieving the effective state
variables, including thus LAI, by inversion of the one-
dimensional radiation transfer model to be applied in
forward mode in the large-scale models. Such a procedure
ensures that simulations of the radiation transfer regimes
using prespecified state variables in large-scale models are
consistent with the flux values derived from space-borne
sensors. Those simulations could thus be further constrained
by observations, and meaningful assimilation schemes can
be operated.
[7] This paper addresses the issue of the inversion of the

two-stream model developed by Pinty et al. [2006] against
radiant flux values recently available on an operational basis
from the Moderate Resolution Imaging Spectroradiometer
(MODIS), the Multiangle Imaging Spectroradiometer
(MISR) on board the Terra platform and Sea-viewing Wide
Field-of-view Sensor (SeaWiFS). The main objective of this
contribution is to document the performances of the meth-
odology which is based on inverse theory as promoted in
particular by Tarantola [1987]. This methodology requires
information about the first and second derivatives of the
two-stream model. It is noteworthy that this information can
be generated in a fully automated manner thanks to the
automatic differentiation technique [Griewank, 2000]. This
leads to a software package allowing the user to perform the
inversion of the two-stream model via a numerically and
computationally very efficient optimization procedure,
while at the same time generating an estimate of the
probability density functions (PDFs) for the retrieved var-
iables including thus the effective LAI value. A large series
of applications based on model-simulated scenarios are
conducted first in order to evaluate the performance of the
two-stream inversion/optimization package under controlled
conditions. A second set of applications is then performed
over midlatitude Earth Observing System (EOS) validation
sites using the operational MODIS and MISR surface
albedo products. The analysis of the large uncertainties
associated with the retrievals promotes the joint use of the
SeaWIFS vegetation FAPAR products together with the
Terra-estimated surface albedos. We then further derive
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PDFs of all the radiant fluxes that can be simulated via the
two-stream model, in particular, those radiant fluxes not
belonging to the measurement set, for example, the fraction
of flux absorbed by the ground underneath the vegetation
layer in the solar domain.

2. Outline of the Inversion Methodology

2.1. The Two-Stream Forward Model

[8] Since large-scale models will likely continue operat-
ing one-dimensional models to represent surface processes
for the foreseeable future, Pinty et al. [2006] have revisited
and updated the two-stream formulations proposed by
Meador and Weaver [1980], Dickinson [1983], Dickinson
et al. [1986], and Sellers [1985]. The study of Pinty et al.
[2006] was conducted with the aim to improve the accuracy
and correctness of existing solutions provided for (1) the
single scattering regime in the canopy, (2) the multiple
scattering regime under high scattering conditions such as
those associated with a snow-covered background, and (3)
three-dimensional effects induced by unresolved internal
variability in the vegetation layer. In addition, these
improvements were proposed in a frame that should facil-
itate the coupling of the radiation transfer processes between
the surface and the atmospheric layers; for example, the
two-stream solutions to the surface problem are given in the
same analytical form as those already derived by Meador
and Weaver [1980] for the atmosphere. For all practical
purposes, this should logically translate into a somewhat
reduced cost of software implementation while preserving
current maintenance efforts.
[9] In summary, the proposed radiation transfer solution

for simulating the scattered, transmitted, and absorbed
radiant fluxes over land surfaces is generated by the sum
of three separate contributions, namely, (1) the black back-
ground (no scattering from the background), the solution of
which follows exactly the one from the study of Meador
and Weaver [1980], (2) the black canopy (no scattering by
canopy elements), essentially associated with the vegetation
structure, and (3) the remaining contribution involving
multiple scattering events between the canopy and the
background approximated by the same solution of Meador
and Weaver [1980] except in the case of an external iso-
tropic source of illumination. Each of the three separate
contributions involves the use of effective variables when-
ever the unresolved variability of the leaf area density

becomes significant, i.e., deviation from the homogeneous
one-dimensional plane-parallel problem. Those effective
variables are the leaf reflectance rl and transmittance tl, or
alternatively the leaf single scattering albedo wl = rl + tl and
the ratio dl = rl/tl (identified here as the asymmetry factor)
and the LAI. Solutions to the problem satisfying the specific
cases involving preferred leaf orientation are given sepa-
rately [see Pinty et al., 2006, Appendix A]. The associated
boundary conditions are the downward radiant flux density
from the atmosphere specified as a function of the fraction
of direct (collimated) and diffuse (assumed isotropic) radi-
ation and the upward radiant flux at the bottom of the
vegetation layer specified via the true (and not effective)
albedo of the background.
[10] The spectrally invariant effective LAI and the spec-

trally dependent effective scattering properties are derived
in a meaningful manner as explained in the work of Pinty
et al. [2004a, section 3.3.2] and Pinty et al. [2006, section
2.3]. Their domain-averaged values are indeed forced to
satisfy the one-dimensional turbid medium representation of
the three radiant fluxes taken together irrespective of the
three-dimensional internal variability of the geophysical
systems. Accordingly, the effective LAI is obtained from
the analysis of the true radiant flux directly transmitted
along direction m0 (cosine of the Sun zenith angle) to the
background level zbgd, i.e., LAI =�2.0m0log[TBlack canopy

# (zbgd,
m0)], while the estimate of the leaf reflectance rl and leaf
transmittance tl effective values is achieved so that they
enable matching the joint reflected and diffusely transmi-
tted radiant fluxes corresponding to the black background
contribution in each spectral domain of relevance. The
dependency of these effective spectrally invariant (variant)
values with respect to the Sun zenith angle was found
weak enough to be parameterized in simple terms [Pinty
et al., 2006, equation (4)] (neglected [Pinty et al., 2004a,
section 3.3.2]).

2.2. The Inversion Methodology

[11] In all generality, the formulation of an inverse
problem aims at optimizing the use of available informa-
tion specified through a priori knowledge on the values of
the model parameters X (those listed in Table 1), the
measurements d (corresponding to the radiant fluxes sim-
ulated by the model), and the constraint provided by the
two-stream radiation transfer model M(X). Such a formu-
lation is relatively generic for solving ill-posed problems.
The following outline is given here for the sake of
completeness, although it is quite common to various
applications in geosciences [see, e.g., Tarantola and Valette,
1982; Enting et al., 1995; Kaminski et al., 1999; Lavergne
et al., 2007].
[12] The associated algebra is particularly convenient [see

Tarantola, 1987] if the measurements and the a priori
knowledge on the model parameters can be approximated
by Gaussian probability distributions, i.e., if they can be both
represented by their mean values d and Xprior and associated
covariance matrices denoted by Cd and CXprior, respectively.
If, in addition, the local linearization provides a good
approximation for the nonlinear model M(X), then the a
posteriori probability distribution P(X) is close to Gaussian
as well. Hence P(X) can be approximated by its mean value
and covariance matrix denotedXpost and CXpost, respectively

Table 1. Mean Values Xprior and Associated Standard Deviations

sXprior Used to Set the Diagonal of the a Priori Covariance Matrix

CXprior
a

Variable Identification Xprior sXprior
LAI 1.5000 5.0, 10.0, 50.0, and 100.0
wl(l1) 0.1700 0.1200
dl(l1) 1.0000 0.7000
rg(l1)

b 0.1000 0.0959
wl(l2) 0.7000 0.1500
dl(l2) 2.0000 1.5000
rg(l2)

b 0.1800 0.2000
al1 and l2 correspond to the broadband visible and near-infrared spectral

domains, respectively. wl(l1,2), rg(l1,2), and dl(l1,2) refer to the single
scattering albedo, background albedo, and asymmetry factor, respectively.

bWith a correlation factor of 0.8862 set in CXprior.
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(where T represents the transpose operator and C�1 the
inverse matrix of C):

PðXÞ � exp � 1

2
ðX� XpostÞTC�1

Xpost
ðX� XpostÞ

� �
ð1Þ

Xpost represents the maximum likelihood estimator of the
mean of P(X) and minimizes the cost function J(X)
expressed as follows:

J Xð Þ ¼ 1

2
M Xð Þ � dð ÞTC�1

d M Xð Þ � dð Þ
h

þ X� Xprior

� �T
C�1

Xprior
X� Xprior

� �i ð2Þ

[13] The first term on the right-hand side of equation (2)
quantifies the mismatch between the model simulations and
the measurements, while the second term expresses the
constraint given by a priori knowledge on the model
parameters. The covariance matrices expressing the uncer-
tainties in the measurements and in the a priori knowledge
on model parameters can be conceived of as weighting
factors in equation (2). If the covariance matrices are
diagonal (implying zero correlation between the elements),
then equation (2) reduces to a least squares formulation, and
each component of d and Xprior is weighted in inverse
proportion to the uncertainty level that is associated with it;
that is, a poor knowledge about a given model parameter is
specified by a corresponding large variance value and thus
carries low weight. As stated previously, the use of a priori
information on the parameters enables transforming an ill-
posed into a well-posed problem. Parameter values that
deviate much from the a priori value, in terms of a priori
uncertainty, are associated (penalized) with a high value of
the cost function and are thus unlikely to occur. Note that
the formulation of equation (2) is rather generic and can be
adopted for inversion purposes at a single time of observa-
tion and for a series of inversions coupled in the temporal
domain.
[14] The inverse problem is solved with a gradient

algorithm minimizing equation (2) which iteratively eval-
uates both J(X) and its gradient rJ(X) with respect to X.
The exact evaluation of this gradient can be achieved via the
adjoint model of J which also saves significant computer
time by contrast to finite difference techniques [Giering and
Kaminski, 1998]. An additional term, which drastically
increases the cost function in case of unrealistic combina-
tions of model parameters [not shown but entering equation
(2)], essentially excludes the corresponding regions in the
model parameter space. Imposing the model parameter
values to be restricted within the domain of their physical
meaning, for instance, LAI 	 0, is indeed a way of adding
soft bounds on the parameter space.
[15] Under the regularity conditions mentioned above, the

Hessian r2J(Xpost) at the minimum of J approximates the
inverse of the a posteriori covariance matrix CXpost. Com-
parison with the a priori uncertainty indicates how well
individual directions in the space of model parameters are
observed through the measurements. Eigenvectors of CXpost

indicate the directions in the parameter space that are
independently resolved by the observations, and the
corresponding eigenvalues quantify the uncertainties asso-

ciated with the retrievals. Comparison of the values in the a
priori and a posteriori covariance matrices thus expresses, in
quantitative terms, the knowledge gain from the inversion
procedure, i.e., from using actual measurements, together
with their associated uncertainties and the model M(X).
[16] The generation of the a posteriori covariance matrix

can be exploited further to evaluate the PDFs of quantities
(X) simulated by the model [see Kaminski et al., 2003;
Rayner et al., 2005]. In our case, the quantities of interest
are the radiant fluxes, in particular, those that are not part of
the measurement set, for example, the flux transmitted
through the vegetation canopy layer for a remote-sensing
application. Once the inversion has been performed, the
uncertainty on the radiant fluxes, including thus those that
are unknown or poorly known, can be expressed by the
covariance matrix Cpost

Flux:

CFlux
post ¼ GCXpost

GT ð3Þ

where G denotes the Jacobian matrix of M(X) at minimum,
i.e., G = @M(Xpost)/@X with a linearization around the mean
values Xpost. This matrix quantifies the correlation between
the posterior uncertainties of the fluxes and notably those
incorporated in the measurement set. It allows us to
approximate the posterior PDFs of the fluxes of interest.
[17] In the present two-stream model applications, the

software code calculating the first and second derivatives
has been generated automatically by the compiler tool
Transformation of Algorithms in C++ (TAC++) [Giering
and Kaminski, 1998] available from FastOpt (http://www.
FastOpt.com/). The software routines for achieving minimi-
zation (dfpmin) and matrix inversion [performed by
computing the eigenvalues and eigenvectors of this matrix
(jacobi)] are provided by the scientific library available
from Press et al. [1986].

3. Performances of the Inversion Procedure

[18] In order to assess the accuracy of the retrievals from
the inversion package, a series of four different Gaussian
distributions of LAI were defined around a constant mean
LAI value such as to span very sparse and dense canopy
conditions. This was realized by increasing progressively
sXprior(LAI) from 5.0 to 10.0, 50.0, and finally 100.0
around a constant mean LAI value of 1.50. Every LAI
value randomly selected within each of these four distribu-
tions was then combined with the remaining model param-
eter values, themselves also selected at random from their
respective prior PDFs as indicated in Table 1. Note that
CXprior is not strictly diagonal but incorporates a correlation
between the soil albedo values in the broadband visible and
near-infrared range [see, e.g., Price, 1995]. The correlation
value between rg(l1) and rg(l2) was set at 0.8862 and
specifies additional constraints on the retrievals.
[19] This ensemble of 2000 [4 values of sXprior(LAI) 


500 samples of spectrally variant model parameter values]
vegetation scenarios thus includes conditions that are all
belonging to the set of possible realizations (specified via
their prior PDFs) while recognizing the large natural vari-
ability in a key state variable, namely, the LAI. This data set
allows us to assess the deviations between the true and the a
posteriori model parameter values under a large variety of
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instances, including those featuring a radiatively semi-
infinite vegetation canopy, i.e., implying thus a negligible/
indiscernible impact of the background albedo on the fluxes
scattered upward by the canopy [see, e.g., Gobron et al.,
1997].
[20] The radiant flux values were estimated in the two

broadband visible (identified with subscript 1) and near-
infrared (identified with subscript 2) domains of interest,
respectively, using the two-stream model developed by
Pinty et al. [2006], for each individual scenario. The bi-
hemispherical flux values generated for each of these
individual scenarios were then used as a measurement set
in the inversion package, and the retrievals from various
combinations of such synthetic measurements were ana-
lyzed. The inversion package was operated for a set of
measurement configurations including the scattered flux in
the two broadband spectral domains (noted R1 and R2)
together with the absorbed flux in the visible domain (noted
A1). This configuration, labeled R1R2A1, acknowledges the
availability of global surface albedo and vegetation FAPAR
products from various sources.
[21] The covariance matrix associated with these synthetic

measurements, Cd, is assumed diagonal, and the baseline
setup is made with standard deviation values of 0.1 for the
fraction of absorbed flux A1 and 5% of their estimated values
for the fraction of measured reflected R1 and R2 spectral
fluxes. These values are selected on the basis of information
involving product intercomparison exercises [see, e.g., Jin
et al., 1999; Pinty et al., 2004b] as well as product compar-
ison against ground-based estimates [see, e.g., Turner et al.,
2004; Gobron et al., 2006].
[22] Each of these 2000 inversion runs required 8.0 


10�3 s on average, although the package has not yet been
optimized for efficiency. These small numbers correspond
to the user time (defined here as the total number of CPU
seconds that the process spends in user mode) on a PC
(Xeon 2.4 GHz) with 2 GB RAM, running under the Linux

2.6 kernel. The software was compiled using the gcc-4.0.1
compiler with no optimization flag.

3.1. Accuracy of the Retrievals

[23] The retrievals of LAI are displayed in Figure 1. The
left panel exhibits the relationship between the true and the
retrieved LAI values, and the right panel shows the
corresponding values of sXpost(LAI) (with logarithmic
scale), extracted from the a posteriori covariance matrix.
Different symbols are used to isolate results from conditions
corresponding to each of the four selected sXprior(LAI)
values. In addition, a red color code is adopted to identify
those retrievals where the retrieved LAI takes values larger
than 4, i.e., vegetation approaching or matching the radia-
tively semi-infinite condition.
[24] The agreement between the series of true LAI values

and those retrieved by inversion is remarkable, and the
associated uncertainties remain within a quite reduced range
[sXpost(LAI) � 0.35 
 LAIpost] for all canopy conditions
where the optimized LAI values are less than 4. In all these
cases, the estimated uncertainty sXpost(LAI) is much lower
than its a priori value for each of the four selected
sXprior(LAI) values indicated in the left panel in Figure 1.
For the very few instances where the quality of the retrievals
deteriorates, the cost function J(X) returns values located on
the right-hand side of its histogram. Figure 1 also exposes
the dependency of the retrieved PDFs for LAI with respect
to the specified value of the a priori uncertainty for canopy
conditions approaching the semi-infinite conditions. For
such conditions, the deviation between the retrieved and
true values of LAI is getting large, and this situation can be
compensated only (all inputs remaining the same) by
increasing the a priori uncertainty in the covariance matrix
on this particular model parameter. The right panel shows
that an uncertainty value sXprior(LAI) of 5.0 induces a
saturation of both the retrieved LAI and sXpost(LAI).
Accordingly, the PDFs of the LAI retrieved under such
conditions may not cover the possible range of LAI values.
By contrast, the progressive increase in the sXprior(LAI)

Figure 1. Left panel: relationship between the true and the retrieved LAI values. Right panel: values
estimated for sXpost(LAI), extracted from the diagonal of the a posteriori covariance matrix. Different
symbols are used to isolate results from cases corresponding to each of the four selected sXprior(LAI)
values. In addition, a red color code is adopted to identify those retrievals where LAI takes values higher
than 4.0, i.e., vegetation approaching the semi-infinite situation.
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values, from 5.0 to 10, 50, and 100.0, translates into an
improved accuracy in the mean LAI values, yielding unbi-
ased estimates over a larger range of LAI, associated with
increasing (with significantly fewer occurrences of satura-
tion) values of their uncertainty. In other words, for con-
ditions where LAI is larger than 4, the inversion package
still delivers unbiased mean estimates but associated with
wider distributions (PDFs). It is noteworthy that the use of
too large sXprior(LAI) (according to the expected range in
LAI for realistic biophysical scenarios) yields extremely
large sXpost(LAI) values indicating thus that there is no
knowledge gain by performing the inversion.
[25] Results from Figure 1 indicate the limited depen-

dency of the LAI optimization procedure with respect to the
a priori information about the expected mean values. In the
specific case of dense vegetation canopies, the physics of
radiation transfer processes and the performances of space-
borne sensors operating in the solar domain are such that
any accurate and precise estimate of LAI values is an
extremely challenging task: retrieving accurate (large) LAI
values associated with limited uncertainty [small sXpost(LAI)
values]. Under such geophysical situations, the inversion
returns a posteriori covariance matrices that are mostly
determined by the information specified in the a priori
knowledge. As a matter of fact, the interpretation of
remote-sensing flux products hardly translates into improving
our current knowledge on the geophysical system.
[26] This state of affairs is confirmed by assessing the

quality of the retrievals with respect to the spectrally depen-
dent model parameters. To this end, Figures 2 and 3 report on
the relationships between the true and the retrieved mean
parameter values (left panels) as well as the uncertainty (right
panels) associated with these retrievals, i.e., the values of
sXpost, in the broadband visible and near-infrared domains,
respectively. For those geophysical scenarios matching the
semi-infinite conditions (red colored symbols), the single
scattering albedos are quite accurately retrieved in both
spectral bands since this is the only significant state variable
of interest for the physical problem to be solved. This
situation translates into unbiased estimates of wl(l1,2) (top
left panels) associated with small uncertainty values (top
right panels).
[27] By contrast, and as expected, retrievals of back-

ground albedos (middle panels) performed under those
semi-infinite canopy conditions correspond to the a priori
knowledge on both the mean and the uncertainty values.
There is no gain in knowledge on these model parameters in
relation with the available measurements, and the inversion
package thus behaves reliably. For geophysical conditions
designed with low and medium LAI values, the quality of
the retrievals of both wl(l1,2) and rg(l1,2) is fluctuating
almost independently from sXprior values. Note that the
sXpost value for wl(l1,2) and rg(l1,2) may, in some geophys-
ical instances, and because of the nonlinearity of the two-
stream model, even exceed its a priori value. A detailed
documentation and discussion of the behavior of the inver-
sion procedure in these few instances are given in the work
of Lavergne et al. [2006].
[28] The accurate estimation of the predominant scatter-

ing regime (bottom panels) is very difficult in both spectral
domains. Indeed, the inversion package returns PDFs of
dl(l1,2) which are about the same as those corresponding to

the a priori. The most favorable conditions for reducing
uncertainty on this model parameter must include those
offering a discernible signature of the downward scattered
transmitted flux [see Pinty et al., 2004a, section 3.3.2].

3.2. Examples of Covariance Matrices

[29] The interpretation of these results also greatly bene-
fits from the availability of the full a posteriori covariance
matrices. Figure 4 displays the corresponding correlation
matrices for different measurement configurations, estimated
in the case of a green leaf vegetation canopy made up with
LAI of 1.75 overlying a medium brightness soil condition;
that is, rg(l1) and rg(l2) are set at 0.12 and 0.21, respectively.
The top left panel is a reminder of the correlations
corresponding to the a priori covariance matrix. Accordingly,
the background albedo in the two spectral domains, namely,
rg(l1) and rg(l2), shows a positive (blue tone) correlation
value (see section 3). The knowledge of the absorbed flux in
the visible domain (labeled A1, top right panel) induces a
strong positive correlation between the leaf single scattering
albedo in this same spectral domain and the LAI, together
with slightly negative correlations with the background
albedos. These patterns express the coupling between the
optical thickness of the layer, LAI, and its lower boundary
condition, when single scattering regime dominates; for
example, interception of radiation is the main driver of the
radiation transfer process. Note that the direction of the
coupling between the model process parameters is indicated
by the sign of the correlation; that is, a negative correlation
between the uncertainty in two parameters means that under-
estimating the first has the same effect as overestimating the
second.
[30] The addition of the upward scattered flux in the two

spectral domains in the set of measurements, configuration
labeled R1R2A1 (bottom left panel), renders the shape of the
a posteriori correlation matrix somewhat more complex: A
positive correlation is observed in the spectral dimension
between the two leaf single scattering albedo values. The
observed negative correlations between the single scattering
albedo and the background albedo in both spectral domains
are a consequence of the balance between the scattering
contribution involving the leaf canopy only, i.e., the black
background, as opposed to the one involving the lower
boundary condition, i.e., mainly the black canopy. Inciden-
tally, one can also notice the positive correlation occurring
in the visible domain between the leaf single scattering
albedo wl(l1) and the asymmetry factor dl(l1); indeed, a
decrease in the leaf scattering efficiency must be compen-
sated by an increase in the backward scattering regime,
hence larger values of dl(l1), in order to maintain the
balance between the absorbed and scattered fluxes by the
canopy.
[31] The inclusion of the transmitted fluxes in the mea-

surement configuration R1R2A1A2T1T2 (bottom right panel)
translates notably into a negative correlation between the
leaf asymmetry factor dl in both spectral domains and LAI.
The latter shows that an increase in LAI can indeed be
partly compensated by an enhancement in the efficiency of
forward scattering regime (for example, if the canopy layer
becomes optically thicker, the leaves have to transmit more
radiation, while the leaf single scattering albedo has to
increase).
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Figure 2. Left panels display the relationships between the true and the mean a posteriori model
spectral parameter values in the broadband visible domain. wl(l1), rg(l1), and dl(l1) correspond to the
single scattering albedo, background albedo, and asymmetry factor, respectively. Right panels show the
sXprior (horizontal lines) and sXpost values [different symbols are used to isolate results from cases
corresponding to each of the four selected sXprior(LAI) values]. The red color code identifies those
retrievals where LAI takes values higher than 4.0, i.e., vegetation approaching the semi-infinite situation.
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[32] The above examples of a posteriori correlation
matrices expose the information content delivered by the
two-stream inversion package. These covariance matrices
display the multiple constraints that must be satisfied when

optimizing equation (2) for the given measurement configu-
ration. Since these constraints follow the physical processes
embedded into the two-stream model, the analysis of these
matrices is quite relevant for learning about the model

Figure 3. Same as Figure 2, except for the case of the model spectral parameter values in the broadband
near-infrared domain, i.e., wl(l2), rg(l2), and dl(l2).
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behavior. Additional examples of such covariance matrices,
discussed in the work of Lavergne et al. [2006], have been
produced in the frame of the current model-based series of
inversion exercises.

4. Application Examples Using Terra Albedo
Products

[33] Measurements from the MODIS and MISR sensors
on board the Terra platform are analyzed by operational
algorithms in order to generate surface albedo products. As
a matter of fact, these products differ in many respects
regarding notably the way they handle the contributions

because of the field of downward diffuse intensities [see,
e.g., Pinty et al., 2005]. For instance, the MODIS sensor
delivers, every 16-day period, bi-hemispherical reflectance
(BHR) values (associated with an incident intensity field
which is purely isotropic) that are intrinsic surface proper-
ties (this product is called ‘‘white sky’’ albedo [Schaaf et al.,
2002], and only those delivered with good confidence levels
[Quality Assessment flag values of 0 and 1] are considered
here). The retrieval algorithm selected for the processing of
data acquired by MISR generates BHRs as well but for the
particular Sun illumination and atmospheric conditions at
the time of the satellite measurement only [Martonchik et al.,
1998]. Since the MISR products include information about

Figure 4. Correlations between model parameter extracted from the a posteriori covariance matrices
estimated in the case of a green leaf vegetation canopy made up of a LAI of 1.75 overlying a medium
brightness soil condition, i.e., rg(l1) and rg(l2) are set at 0.12 and 0.21, respectively. Positive (negative)
correlations are featured by blue (red) color tones.
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the intrinsic surface anisotropy, i.e., the so-called modified
Rahman-Pinty-Verstraete model parameters [Engelsen et al.,
1996], it becomes possible to generate BHR values analo-
gous to the MODIS white sky albedos. In addition, selected
spectral conversion formulae [see Liang et al., 1999; Liang,
2000; Govaerts et al., 2006] were adopted in order to derive
comparable broadband visible and near-infrared products
from both sensors (see Pinty et al. [2004b] for comparison
of results). An aggregation over each 8-day period of the
year has been performed on these MISR products in order to
maximize their geographical coverage. It must be empha-

sized here that MODIS and MISR albedo products are
generated from algorithms solving an atmospheric radiation
transfer problem with respect to its lower boundary condi-
tion, with no specific assumption on the surface land cover
type and condition.
[34] In the context of the present series of applications,

time series of remote-sensing products estimated during
year 2001 over specific midlatitude sites associated with
field activities have been selected (see Table 2). This
selection encompasses contrasted biome type and vegeta-
tion phenological cycles so that our inverse procedure can

Table 2. Identification and Main Characteristics of the Selected Sites

Field Site Identification Geographical Coordinates Vegetation Type Expected Radiation Transfer Regimea

Dahrab (Senegal) 15�220N Semi-arid grass ‘‘Fast’’
15�260W Savannah Short and homogeneous over 1–2 km

Agroc (United States) 40�00N Broadleaf crops including ‘‘Slow’’
88�170W Corn and soybean Mixed vegetation with different land cover type

Konzac (United States) 39�40N Grassland, shrubland, and cropland ‘‘Slow’’
96�330W Mixed vegetation with different land cover type

Mongud (Zambia) 15�260S Mixed shrubland and woodland ‘‘Resonant’’
23�150E Intermediate height but low density vegetation

aBased on the studies of Davis and Marshak [2004] and Gobron et al. [2006].
bSee Fensholt et al., 2004.
cSee Turner et al., 2004.
dSee Huemmrich et al., 2005.

Figure 5. Time series of the broadband visible (full circle symbols) and near-infrared (squared symbols)
MODIS (red color) and MISR (blue color) BHR-white sky albedo products over the site of Dahra (top
left panel), Agro (top right panel), Konza (bottom left panel), and Mongu (bottom right panel),
respectively. A short description of the sites is provided in Table 2. MODIS (MISR) values are plotted on
day 8 (4) of every 16-day (8-day) period.

D10116 PINTY ET AL.: RETRIEVING LEAF AREA INDEX FOR CLIMATE MODELS

10 of 23

D10116



be evaluated under different environmental conditions. In
addition, each of these sites samples a different radiation
transfer regime associated with the three-dimensional inter-
nal but unresolved variability of the leaf area density (see
Gobron et al. [2006] for detailed discussions). Figure 5
displays the evolution of the broadband visible and near-
infrared MODIS and MISR BHR-white sky albedo products
over the four selected sites. On this figure, the MODIS
values are plotted on day 8 of every 16-day period, while
the MISR values are associated with day 4 of every 8-day
period. The overall good agreement between the two sets of
products is noticeable given the major differences in the
input data sets and in the scientific strategies devised for
these surface albedo retrieval algorithms. Note, however,
that these differences may exceed the a priori uncertainty
(5% of their estimated values) assigned in the measurement
covariance matrix Cd. The intra-annual variations in BHR
values over the four selected sites show different types of
situations: (1) high BHR values in both spectral domains
with in-phase changes in August and September months
over Dahra, (2) low (high) BHR values in the visible (near-
infrared) with well-pronounced antiphase variations over
Agro between June and September, (3) low (high) BHR
values in the visible (near-infrared) with relatively limited
antiphase variations over Konza, and (4) low BHR values in

both spectral domains with no strong seasonal variations
over Mongu. This variety of situations thus yields a chal-
lenging set of conditions for the inversion package given
that information gathered in situ report the occurrence of
changes in vegetation cover and density during the course
of year for all four sites.
[35] The values assigned to the model parameter in the a

priori covariance matrix CXprior are the same as in Table 1
with sXprior(LAI) = 5.0. In the following sections, retrieval
results with a measurement configuration including the
two broadband spectral albedos only (labeled as R1R2 on
the figures) from the Terra platform will be discussed.
All results reported in this paper were produced in static
mode that is, with no updating of the a priori knowledge
(on the model parameters and the associated covariance
matrix), based on retrievals performed at previous time
steps.

4.1. The Spectrally Invariant Effective Leaf
Area Index

[36] The retrieved effective LAI values and their associ-
ated uncertainty level, ±sXpost(LAI), are shown in Figure 6
for each of the four sites. Besides the expected seasonal
trends which are apparent on each panel, one may notice
first the occurrence of large uncertainties when LAI takes

Figure 6. Time series of the effective leaf area index (LAI) retrieved from the MODIS (red color) and
MISR (blue color) BHR-white sky albedo products over the site of Dahra (top left panel), Agro (top right
panel), Konza (bottom left panel), and Mongu (bottom right panel), respectively. A short description of
the sites is provided in Table 2. MODIS (MISR) values are plotted on day 8 (4) of every 16-day (8-day)
period. The associated uncertainty values, i.e., the standard deviation ±sXpost(LAI), returned by the
inversion package on the diagonal of the a posteriori covariance matrix are reported with vertical bars.
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values larger than approximately unity. The retrieval of LAI,
especially for large values, remains indeed quite uncertain
when using two spectral BHR values only in the measure-
ment set even if the later is associated with a somewhat high
accuracy level. Given the poor a priori knowledge specified
with a constant LAIprior value equal to 1.50 together with a
large uncertainty, i.e., sXprior(LAI) = 5, the knowledge gain
from this inversion exercise, i.e., sXpost(LAI)/sXprior(LAI),
is still remarkable. The second interesting feature concerns
the impact on the retrieved distributions of LAI because of
the slight differences occurring between the MODIS and
MISR broadband BHR values, especially when low vege-
tation conditions are prevailing, i.e., mostly before and after
the start of the growing and senescent periods. These
differences (such as those observed in the broadband visible
domain where MODIS BHRs are slightly lower than the
corresponding MISR products) translate into MODIS LAI
values (the maximum likelihood of the distributions) being
systematically biased high (by about 0.5 absolute) with
respect to those retrieved from MISR. In most cases,
however, the PDFs of the MODIS and MISR LAI values

share a significant common area as is illustrated by the
overlapping of the uncertainty bars reported in Figure 6.

4.2. The Spectrally Variant Background Albedo

[37] The two-stream model implements solutions estimat-
ing the radiant fluxes on the basis of effective parameter
values that characterize the vegetation layer, while, by
contrast, the lower boundary condition is specified as the
‘‘true’’ value. Figure 7 displays the results of the retrievals
regarding the background albedo values. The inversion
procedure tolerates very significant departures from the
mean a priori value as can be seen notably in the case of
Dahra where rather bright background values are retrieved
with, in most instances, high confidence levels. As dis-
cussed already in section 3.1, the background albedo returns
to its a priori value, together with an increasing uncertainty
range, in both spectral domains under conditions where LAI
is large enough, i.e., during the summer period over the sites
of Agro and Konza. In the case of Mongu, the retrievals
feature a weak but systematic seasonal linear trend, partly
arising because of correlations between the LAI and the
soil background brightness. It is noteworthy that in situ

Figure 7. Time series of the retrieved true background albedo from the broadband visible (full circle
symbols) and near-infrared (squared symbols) MODIS (red color) and MISR (blue color) BHR-white sky
albedo products over the site of Dahra (top left panel), Agro (top right panel), Konza (bottom left panel),
and Mongu (bottom right panel), respectively. MODIS (MISR) values are plotted on day 8 (4) of every
16-day (8-day) period. The associated uncertainty values, i.e., the standard deviation ±sXpost(rg(l1,2)),
returned by the inversion package on the diagonal of the a posteriori covariance matrix are reported with
vertical bars. The horizontal dotted (dashed) lines correspond to maximum likelihood of the a priori PDF
for the broadband visible (near-infrared) spectral domain.
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measurements mention a value of roughly 0.06 [Huemmrich
et al., 2005] for the soil background in the visible spectral
domain which thus agrees well with the range of our
retrievals over this site.

4.3. The Spectrally Variant Single Scattering Albedo

[38] As discussed in section 3.1, very limited knowledge
is gained on the effective single scattering albedo when
low LAI values occur (see Figure 8). Since the former
parameter controls a large part of the measured BHRs
when the vegetation becomes denser, the inversion proce-
dure delivers wl(1,2) values within a small uncertainty
range. This result suggests that the deviations from the
true single scattering albedo remain somewhat limited as
can be anticipated for more closed/dense canopies. During
the summer period over Konza, the MISR optimized
values are also larger than those retrieved from MODIS
in order to balance for the slight differences in the BHRs
derived from these two instruments. The large single
scattering values in both spectral domains (associated with
a huge uncertainty range) occurring at the end of February
over Dahra are accompanied by an abnormally high (with
respect to the time series) cost function value for that
particular 16-day period (see Figure 5). Somewhat analo-
gous behaviors are observed at the very beginning and end
of the year over the site of Agro where snow or frost
conditions may have occurred. Note that the current setup
of the inversion procedure is such that the snow back-
ground conditions are too unlikely to occur in the a priori

knowledge (see Table 1) for being accepted as a solution
within a good-enough confidence level. These are typical
situations where adopting a temporally coupled inversion
approach may prove beneficial.

4.4. The A Posteriori Absorbed Radiant Fluxes

[39] The PDFs of all radiant fluxes which the two-stream
model is able to simulate can be delivered by the inversion
procedure [see equation (3)]. Figures 9 and 10 show the
estimated seasonal variations of the fraction of absorbed
flux in the broadband visible A1 (close to the green FAPAR)
and near-infrared domains A2, respectively. In the visible
domain, dominated by single scattering regime, the effective
LAI is the main driver for the absorption process, and,
consequently, features observed on the retrieved LAI (see
Figure 6) are duplicated on the absorbed fraction of radia-
tion. These include the seasonality of the flux, the associ-
ated uncertainty values, and the bias, the magnitude of
which is approximately 0.2, induced by small differences
in the MODIS versus MISR BHRs mainly occurring at the
beginning and at the end of the vegetation growing season.
Analogous variations, although somewhat attenuated, are
observed in the near-infrared domain especially when
multiple scattering processes are becoming significant (for
example, occurrence of bright background with substantial
amount of leaves). Despite the relatively limited leaf
absorption capability, a significant amount of incoming
radiation still has a high probability of being absorbed by
the canopy in the near-infrared domain.

Figure 8. Same as Figure 7, except for the case of the effective single scattering albedo.
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[40] The joint estimation of the fraction of radiation
which is scattered by, absorbed in, and transmitted through
the canopy layer permits us deriving the fraction absorbed
in the ground (below the vegetation layer). This later
fraction estimated in the visible and near-infrared domain
is depicted in Figures 11 and 12, respectively. The fractions
absorbed in the ground in both spectral domains are about
the same or slightly lower in the near infrared (for example,
over the site of Dahra), with a smaller uncertainty in the
near infrared as well. The seasonal trends follow quite
logically those observed notably in the values of the
effective LAI since the later largely controls the absorbed
and scattered fractions. On average of the entire year and
despite the ecological variability between the four midlati-
tude studied sites, the fraction of radiation absorbed in the
ground is roughly around 0.5 of the amount available at the
top of the vegetation canopy.

5. Toward Reducing Uncertainties

[41] Results presented in section 4 examples using Terra
albedo products based on current operational products from
Terra are characterized by very large uncertainty ranges on
the LAI and the fraction of absorbed flux in the vegetation.
As mentioned previously, these large uncertainty ranges

arising when medium to high LAI conditions prevail are
an immediate consequence of both the radiation transfer
processes and the limited information provided in the a
priori knowledge (see Lavergne et al. [2006] for results
from a detailed analysis of the performances of the inver-
sion package). These limitations include notably the uncer-
tainty range specified on the albedo measurements as well
as the width of the a priori distributions of the model
parameter values. At this stage, one additional possibility
to retrieve more accurate information on the model param-
eters consists in incorporating more measurements than the
BHR-white sky albedos only. Given the nature of the
radiation transfer processes in vegetation canopies (for
instance, the fact that the LAI largely controls the fraction
of absorbed radiation in the visible domain) together with
results discussed in section 3, the inclusion of operational
FAPAR products in the measurement configuration is thus
quite appropriate. The specific SeaWiFS FAPAR products,
delivered by the EC-Joint Research Centre (JRC), have
been selected in the current application, instead of those
from the Terra sensors, in order to limit as much as possible
the correlation of uncertainties between the set of products
incorporated in the measurement configuration. Such cor-
related uncertainties on the measurements can be handled

Figure 9. Time series of the fraction of absorbed radiation in the vegetation layer in the broadband
visible domain (A1) retrieved from the MODIS (red color) and MISR (blue color) BHR-white sky albedo
products over the site of Dahra (top left panel), Agro (top right panel), Konza (bottom left panel), and
Mongu (bottom right panel), respectively. A short description of the sites is provided in Table 2. MODIS
(MISR) values are plotted on day 8 (4) of every 16-day (8-day) period. The standard deviations
associated with the PDF of the retrieved values are reported with vertical bars.
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by our inverse procedure, but this would primarily increase
the a posteriori uncertainties.
[42] The SeaWiFS FAPAR products are generated at JRC

thanks to a dedicated processing chain that was developed
to deliver daily, 10-day, and monthly time composite
products at a global scale with spatial resolutions ranging
from about 2 km up to 0.5� [Mélin et al., 2002]. Accord-
ingly, 7 years of SeaWiFS FAPAR products are available
since the beginning of the mission in September 1997
[Knorr et al., 2005]. The FAPAR algorithm was originally
designed and implemented in order to generate, at medium
spatial resolution, and from the set of radiances measured, at
the top of the atmosphere for Sun angle conditions not
exceeding 50–60�, in a blue, red, and near-infrared band,
FAPAR products whose absolute accuracy remains statisti-
cally within the prespecified ±0.1 range. Results from the
first attempts to validate these vegetation FAPAR products
within this prespecified accuracy range are discussed in the
study of Gobron et al. [2006]. The values of these products
are function of the Sun angle at time of acquisition, and this
angular dependency is accounted for in the current inversion
procedure. It is noteworthy that FAPAR products may, in
some instances, be lower than the total fraction of absorbed
flux A1, as understood by the two-stream model, notably
because of the contributions due to nongreen and woody
elements in the canopy.
[43] In order to deliver conservative estimates of uncer-

tainties on the retrievals, a standard deviation value of 0.2

was specified for the fraction of absorbed flux A1 in the
covariance matrix Cd.

5.1. Leaf Area Index

[44] The reduction in the uncertainty range on the retriev-
als of the effective LAI is quite significant for all studied
cases, as can be seen from comparing results shown in
Figures 13 and 14 (measurement configuration labeled
R1R2A1) with those discussed from Figure 6 (measurement
configuration labeled R1R2). For LAI values larger than
unity, the uncertainty is reduced by a factor of about 3 on
average over all sites.
[45] Estimations of LAI values available over each site,

from ground-based measurements (black thick pluses) as
well as operational algorithms implemented for interpreting
the MODIS (8-day composite values from collection 4, red
thick crosses) and MISR (collection 6, blue thick crosses)
surface bi-directional reflectance factors, are also shown in
Figures 13 and 14. For the sake of readability of the figure,
the expected uncertainty ranges on these products are not
reported here. Note also that the operational LAI algorithms
implemented on the Terra sensors intend at retrieving the
‘‘true’’ by contrast to the ‘‘effective’’ LAI [Knyazikhin et al.,
1998a, 1998b].
[46] The overall agreement between our two-stream-

based retrievals using the MODIS white sky albedo (red
diamonds) or the MISR BHRs (blue diamonds) and the
ground-based estimations appears quite satisfactory for all
four sites, given the many issues and caveats to be

Figure 10. Same as Figure 9, except for the case of the fraction of absorbed radiation in the vegetation
layer in the broadband near-infrared domain (A2).
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addressed when interpreting the latter data sets at mesoscale
spatial resolutions [e.g., Morisette et al., 2005]. Note also
that the ground-based estimations reported over the sites of
Agro and Konza are for year 2000 [Turner et al., 2004]. The
in situ LAI values over Mongu correspond to effective LAI
and include the additional contribution by about 0.3 from
woody material [Huemmrich et al., 2005, section 4.3]. One
may also notice that the signature of the impact of the small
differences discussed previously between the MODIS and
MISR BHR values is also somewhat concealed with the
current (R1R2A1) measurement configuration.
[47] The diversity in vegetation phenology observed over

all sites and depicted by the seasonal trends in LAI, such as
the start, end, and length of the growing season, are well
retrieved by the various analyses of the remote-sensing
products. It is worthwhile to emphasize here that these
analyses use different approaches, tools, and even input
products; for example, the operational algorithms for the
Terra sensors are based on spectral BRF information,
while ours make use of broadband BHRs or white sky
albedos eventually coupled with the SeaWiFS JRC-FAPAR
products.
[48] The MODIS LAI operational product (from collec-

tion 4, with QA values equal to 0 and 1 only) is generally
biased high with respect to both our current and ground-
based estimations as well. This corroborates earlier findings
reported over a variety of sites when comparing the suc-
cessive MODIS LAI product collections against in situ
derived values [see, e.g., Fensholt et al., 2004; Huemmrich

et al., 2005; Yang et al., 2005]. Part of this bias when
occurring for low LAI conditions, for example, periods
outside the range of the growing seasons, may be caused
by slight differences in the input surface products. Our
findings discussed in Figure 6 indeed suggest that these
differences translate into LAI differences that may reach 0.5
under such geophysical situation. The MISR LAI opera-
tional algorithm delivers product values (collection 6) for a
limited fraction of the time series over the four sites and
this, even where and when valid surface BHR information
exists. When this product is available, it does not exhibit
any significant bias as is the case for MODIS, but in some
instances, it shows a large temporal variability and can raise
to unrealistically high values, for example, over the site of
Mongu during the wet season.
[49] The absolute difference between the MODIS and

MISR LAI operational products, estimated using a 16-day
aggregation procedure, is equal to 0.82, on average over the
year and over the four selected sites. By comparison, the
average difference obtained with our inversion procedure
using the MODIS white sky and MISR BHR values only,
i.e., the R1R2 measurement configuration, does not exceed
0.28, i.e., a reduction by a factor of about 3 with respect to
the operational products. Given that the same algorithm
operated with the same type of measurements was applied
on both instruments, this value of 0.28 quantifies the impact
to be expected on the LAI product because of slight differ-
ences between the MODIS and MISR surface albedo
products. Logically, this difference is further reduced to

Figure 11. Same as Figure 9, except for the case of the fraction of absorbed radiation in the ground
(below the vegetation layer) in the broadband visible domain.
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0.14 when operating the inversion package with the R1R2A1

measurement configuration.

5.2. Fraction of Absorbed Radiation in the
Visible Domain

[50] The inversions performed with the measurement con-
figuration R1R2A1 generate model parameter values which
are close to those discussed in section 4 examples using Terra
albedo products. This updated set of parameter values can
then be adopted to estimate the a posteriori radiant fluxes as
proposed in section 4.4, including the instantaneous fraction
absorbed by the vegetation A1(m0) considered here as equiv-
alent or indiscernible to the FAPAR products. The benefit
from reducing the uncertainty ranges on the retrieval of the
effective LAI is illustrated in Figures 15 and 16, showing the
corresponding fraction of absorbed radiation by the vegeta-
tion layer in the broadband visible domain, at time of
acquisition by the SeaWiFS sensor. This fraction is indeed
associated with much lower uncertainty range than when
solving the inverse problem using the MODIS and/or MISR
BHR information only (see Figure 9).
[51] Comparing the original (shown in green symbols in

Figures 15 and 16) and the a posteriori FAPAR values
[shown in red (blue) symbols when coupled with the
MODIS (MISR) BHRs] reveals notably the following:
[52] . The two sets of products remain close to each other

in the vast majority of cases. In other words, the inverse
problems could be solved without requiring drastic correc-
tions to the a priori FAPAR values.

[53] . In a few instances generally associated with low
vegetation density, as is the case over Dahra at DOY 110,
showing suspiciously low MISR BHR value in the visible
domain (Figure 5), the strong constraint imposed by the
BHRs forces the FAPAR to take on values probably lying
out of the range that can be expected when considering the
full time series. Such undesirable events could be avoided
by increasing the uncertainty on these BHR values and/or
applying the inversion for a time series of acquisition.
[54] . The a posteriori covariance matrix delivered by the

inversion allows us to refine the uncertainty range on our
measurements, such as the FAPAR. In a number of cases,
the standard deviation values ±sdpost(FAPAR) is smaller than
the corresponding a priori values (set at ±0.2).
[55] The order of magnitude of our current estimates

compares favorably over those sites where ground-based
estimations of FAPAR are available. One must keep in mind
here the significant levels of difficulty to be faced for
deriving accurately and reliably such flux domain-averaged
quantities [e.g., Gobron et al., 2006; Widlowski et al., 2006;
Yang et al., 2005]. Over the sites of Agro and Konza, the
ground-based FAPAR estimations are derived assuming an
exponential attenuation given by the Beer’s law with
extinction coefficients of 0.58 and 0.5, respectively [Turner
et al., 2004]. In these instances, the reported FAPAR values
are thus a one-to-one function/rescaling of the in situ LAI
estimations. In the case of Mongu, the measurement proto-
cols for the effective LAI and FAPAR involve different
instruments and procedures. Incidentally, one may notice

Figure 12. Same as Figure 10, except for the case of the fraction of absorbed radiation in the ground
(below the vegetation layer) in the broadband near-infrared domain.
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that the good agreement observed between the in situ and
remote-sensing-derived LAI product (see bottom right panel
on Figure 6) tends to deteriorate during the wet season, in
the case of the FAPAR products only.
[56] The bias toward high values noticed previously from

the MODIS LAI operational product is exhibited as well by
the MODIS FAPAR product. There is no analogous bias
when considering the FAPAR product generated by the
MISR operational algorithm, but the large temporal vari-
ability mentioned earlier is still significant. The annual
average over the four sites of the absolute difference
between the MODIS and MISR FAPAR operational prod-
ucts is equal to 0.17, with a maximum of 0.23 occurring

over Mongu. This difference decreases to a value of 0.11,
with a maximum of 0.15 occurring over Konza, when
applying our two-stream inversion package with the
MODIS white sky and MISR BHR values only, i.e., the
R1R2 measurement configuration.

6. Conclusions

[57] The availability of multiannual radiant flux products
derived operationally over land surfaces at the global scale
from various institutions encourages their exploitation for
general climate model applications. Achieving this objec-
tive requires to ensure the physical consistency between

Figure 13. Time series of the effective leaf area index (LAI) retrieved by our inversion procedure
(symbols .) from the MODIS (in red color) and MISR (in blue color) BHR-white sky albedo products
over the site of Dahra (top panel) and Agro (bottom panel), respectively. MODIS (MISR) values are
plotted on day 8 (4) of every 16-day (8-day) period. The associated uncertainty values, i.e., ±sXpost(LAI),
are reported with vertical bars. Symbols (
) indicate the retrievals from the MODIS (in red color) and
MISR (in blue color) operational algorithms, respectively, while the black color pluses (+) refer to the
ground-based estimations.

D10116 PINTY ET AL.: RETRIEVING LEAF AREA INDEX FOR CLIMATE MODELS

18 of 23

D10116



these radiant flux products such as albedos and the associated
values of the state variables entering the one-dimensional or
two-stream representation of the radiation transfer regime in
general climate models. To remedy this situation, Pinty et al.
[2006] have suggested, for instance, that effective instead
of allometric LAI values must be considered for ingestion
by general climate models in order to generate the correct
balance between the fluxes reflected, absorbed, and trans-
mitted by vegetation canopy layers. As a consequence,
radiant flux products derived from remote-sensing meas-
urements must be analyzed in order to retrieve the desired
state variables, which are effective values for those char-
acterizing the vegetation layer but true values for the soil
underneath.
[58] The proposed methodology which is developed and

tested in the present contribution capitalizes on advanced
software techniques, such as automatic differentiation used
to generate the adjoint and Hessian code of a cost function.
This software package inverts the two-stream model of

Pinty et al. [2006] in a numerically accurate and computer-
efficient manner. It delivers extensive statistical information
on the results, allowing us to evaluate in quantitative terms
the quality of the retrievals and the performance of the
inverse procedure itself. The procedure thus delivers esti-
mates of the PDFs of all variables entering the two-stream
model and all the radiant fluxes that can be generated by
this model. Correlations are assessed from the a posteriori
covariance matrix. The inverse package can be operated
using various measurement configurations including those
with a limited number of radiant fluxes, for example, the
broadband visible and near-infrared reflected fluxes only in
the solar domain.
[59] A series of tests have been conducted using two-

stream model-based simulated scenarios. It was shown, for
instance, that the agreement between the series of true LAI
values and those retrieved by inversion is remarkable. The
associated uncertainties remain within a quite small range
[sXpost(LAI) � 0.35 
 LAIpost] for all canopy conditions

Figure 14. Same as Figure 13, except for the case of the Konza and Mongu sites.
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where the a posteriori LAI values are less than 4.0. This
uncertainty range is obtained under rather favorable mea-
surement conditions that include the visible and near-
infrared broadband BHRs (associated with a 5% relative
uncertainty) together with the fraction of absorbed flux in
the visible domain (associated with a 0.1 absolute uncer-
tainty). The knowledge gain on the model process param-
eters thanks to the inversion is appreciated by comparing
the a posteriori with the a priori uncertainty estimates.
[60] The inverse methodology has been applied over four

selected midlatitude EOS validation sites representing a
large variety of surface conditions regarding the vegetation

type and phenology, as well as the three-dimensional
heterogeneity. This application was performed first using
the visible and near-infrared broadband BHRs (or white sky
albedos) generated from data acquired by the MODIS and
MISR instruments on board the Terra platform. The retriev-
als of all the two-stream model variables were successful
and, in some instances, could be compared favorably with
available ground-based estimations. These retrievals were
then used to derive a posteriori estimates of radiant flux
quantities and their associated uncertainties, including
fluxes not directly observed such as the fraction of solar
radiation absorbed in the ground below the vegetation layer.

Figure 15. Time series of the fraction of absorbed radiation in vegetation in the broadband visible
domain (A1) retrieved by our inversion procedure (symbols .) from the MODIS (in red color) and MISR
(in blue color) BHR-white sky albedo products over the site of Dahra (top panel) and Agro (bottom
panel), respectively. MODIS (MISR) values are plotted on day 8 (4) of every 16-day (8-day) period. The
standard deviations associated with the PDFs of the retrieved values are reported with vertical bars.
Symbols (
) indicate the retrievals from the MODIS (in red color), MISR (in blue color), and SeaWiFS
(in green color) operational FAPAR algorithms, respectively, while the black color pluses (+) refer to the
ground-based estimations.
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This analysis reveals the sensitivity of the maximum like-
lihood estimator of LAI and the fraction of the absorbed
flux by vegetation under sparse vegetation canopy condi-
tions to slight differences or biases existing between the
MODIS and MISR BHR products. It also demonstrates the
large uncertainty levels associated with the retrievals. These
are mainly a consequence of the limited a priori knowledge
on the model parameters and the available measurement set.
One simple way to remedy this situation consists in adding
extra measurements in order to increase the a priori knowl-
edge on the geophysical system under study. This was
achieved using the Terra-independent estimates of the
FAPAR, produced at the Joint Research Centre on the basis
of the data acquired globally by the SeaWiFS sensor. The
JRC-FAPAR SeaWiFS products were included in the mea-
surement set that is used together with the MODIS and
MISR BHRs, with an absolute uncertainty of 0.2.

[61] The analysis of this second set of inversion results
yields the following main conclusions:
[62] . The uncertainty levels on the estimates of all model

parameters and related radiant fluxes are significantly
reduced.
[63] . The slight differences existing between the input

MODIS and MISR BHRs do not translate into discernible
signatures on the retrievals.
[64] . The time series of the retrieved quantities are quite

smooth and exhibit, in all canopy conditions, much less
variability than those derived by the operational MODIS
and MISR algorithms, although all the inversions were
performed here in independently with respect to time.
[65] . The retrieved quantities (model parameters and

fluxes) are in very good agreement with ground-based
estimates, even over the radiatively complex situation
prevailing at the Mongu site.

Figure 16. Same as Figure 15, except for the case of the Konza and Mongu sites.
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[66] The proposed inverse methodology thus provides an
efficient and practical way to generate, by reanalyzing the
existing radiant flux products at limited cost, a consolidated
and unique Terra series of land surface products especially
devoted to large-scale and climate model applications.
Upcoming research efforts will concentrate on challenging
conditions such as those encountered at high latitudes over
boreal forest systems where contamination by snow
remains an issue. The proposed methodology implements,
however, all basic ingredients required to perform the
assimilation of the remote-sensing flux products in a tem-
porally coupled mode that could prove useful under these
challenging conditions.
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