On the Performance of Derivative Code
Generated by TAMC

Ralf Giering
FastOpt, Hamburg, Germany

e-mail: Ralf.Giering@FastOpt.de

Thomas Kaminski
Max-Planck-Institut fiir Meteorologie, Hamburg, Germany

e-mail: kaminskiQdkrz.de

submitted to Optimization Methods and Software

April 25, 2000

Abstract
The Tangent linear and Adjoint Model Compiler (TAMC) is a source-to-
source translator for Fortran programs that generates code to evaluate first or
second order derivatives. For first order derivatives, code operating in forward
(tangent linear code) or reverse mode (adjoint code) mode can be generated.

TAMC’s key features for generating efficient adjoint code are briefly described.

The performance of TAMC generated adjoint and second order derivative code
is compared to that of hand coded counterparts for scalar valued functions in the
Minpack-2 collection. The run times for the automatically generated and hand
written codes are similar. With increasing degree of optimization by the Fortan
compiler, the speedup for the generated codes is larger than that for the hand
written codes. TAMC has generated adjoint models for large scale applications
in dynamic meteorology and oceanography. For some of those the performance
is discussed: The run time of the adjoint codes is only about a factor of 3 to 6
higher than that of the respective function evaluations. This, however, includes
the time for 2 or 3 function evaluations, which are required by the necessary

check-pointing schemes.

Keywords: Automatic differentiation, optimization, adjoint model, adjoint code

1 Introduction

Adjoint models are increasingly being used in computational fluid dynamics (CFD), in
particular in meteorology, oceanography, and climate research. Typical applications
are data assimilation, model tuning, and sensitivity analysis. Both data assimilation
and model tuning derive a set of control variables that achieves an optimal degree of
consistency between simulated and observed quantities. This degree of consistency is
quantified by a scalar valued misfit or cost function, which is defined by the (usually
large and complex) numerical model of the system under consideration. If first order
derivatives can be provided, powerful iterative gradient algorithms (see, e.g, 9) can

be employed to minimize the cost function by variation of the control parameters.

Applying the reverse mode of automatic differentiation (AD), adjoint code evaluates
this first order derivative or gradient. To analyze the uncertainties in the inferred
optimal values of the control variables, second order derivatives of the scalar valued
cost function are of interest. Since, usually, the number of control variables is large,
evaluation of the full second order derivative, i.e. the Hessian matrix, is prohibitively
expensive. However, Hessian times vector products are relatively cheap and provide
a module to compute certain properties of the Hessian matrix. For example the best
constrained directions are the leading eigenvectors of the Hessian matrix and can be
determined iteratively by Lanczos type algorithms (22).

In practice, many of the abovementioned adjoint applications are based on models
that have been previously developed and applied for simulation of the system under
consideration, i.e. the designers of these models did not necessarily have adjoint appli-
cations in mind. Typically these models are written in Fortran, more precisely some
Fortran dialect in between FORTRAN-77 and Fortran-90, with a recent tendency to-
wards Fortran-90. These models typically run on super computers close to the limit
of resources in terms of both memory and CPU time. Since the abovementioned ap-
plications (except for sensitivity analysis) require multiple runs of the adjoint models,
it is obvious that efficient use of computer resources by the adjoint code is a necessary
condition for executing the generated adjoint models.

In the eighties and early nineties, adjoints of CFD models have been hand coded.
This task, however, is extremely error prone and time consuming. Furthermore, the
strategies that have been used made the adjoint code inflexible to changes in the model

code. As a consequence, development of adjoint models was rare and usually limited

to simplified models (32; 29). This also holds for numerical weather prediction models:
despite an enormous effort in hand coding of adjoints, typically, only for a fraction
of the code the adjoints are available. For evaluation of second order derivatives, the
situation is even worse: As a consequence of its even larger degree of complexity, for
large scale applications, there exists no hand written code (4).

Since a few years, a number of AD tools are being developed, some of which
are capable of generating adjoint code (Odyssee (28), TAMC (7)). Further tools
operating in reverse mode are employing operator overloading capabilities of CT+
or Fortran-90 (ADOL-C, AD01, ADOL-F, IMAS, OPTIMA90) (3) or do explicit
operator overloading in Fortran-77 by replacing arithmetic operations by subroutine
calls (PADRE2 (21), GRESS (16)). In contrast to hand coding, these tools allow fast
and safe generation of adjoint code. Therefore adaptation of the derivative code to
changes in the model code is fast, too. So far, however, two essential disadvantages of
these tools have hampered their wider use: (i) the need of extensive preparation of the
model code (only a subset of the language could be handled, and information about
the structure of the code had to be provided), and (ii) the low computational efficiency
of the generated code, which is most severe for operator overloading. Meanwhile, the
development of the Tangent linear and Adjoint Model Compiler (TAMC, (7)) has
reached a state at which both of these disadvantages are overcome: For a number
of large and complex CFD models, after minor preparation of their code, TAMC
was able to generate efficient derivative computing code. This paper quantifies and
discusses the performance of the adjoint codes for some of these models, and the

second derivative computing code for one of the models.

Although, in theory, these derivative computing codes also could have been hand
written, in practice, without AD none of these applications would have been per-
formed. This means in particular that there exist no hand coded counterparts to
compare the automatically generated code to in terms of efficiency. To get at least
a flavor of how such a comparison would look like, we employed the Minpack-2 test
problem collection (2). For a number of small to medium size problems this collection
contains hand written code to evaluate a scalar valued function, its gradient, and the
product of its Hessian times a vector.

The remainder of the paper is organized as follows: Section 2 gives a brief de-
scription of TAMC. Section 3 gives a comparison of TAMC generated derivative code
to hand written derivative code for some functions of the Minpack-2 collection. The
performance of complex CFD codes will be quantified in section 4. Section 5 gives a

summary and conclusions.

2 TAMC

The aim of this section is to give a brief description of TAMC, with a focus on those
features that are essential for generating efficient derivative code. A more elaborate
introduction to TAMC is given by (8), users should consult also (7).

TAMC is a source-to-source translator for Fortran programs to generate derivative
computing code operating in forward or reverse mode. The internal algorithms are
based on a few principles suggested e.g. by Talagrand (31). These principles can be

derived from the chain rule of differentiation. TAMC applies a number of analyses and

code normalizations similar to those applied by optimizing compilers (constant propa-
gation, index variable substitution, data dependence analysis). In addition, given the
top-level routine to be differentiated and the independent and dependent variables,
by applying a forward/reverse data flow analysis TAMC detects all variables that
depend on the independent variables and influence the dependent variables (active
variables). This is in contrast to operator overloading based tools, where the user has
to determine active variables and to declare them to be of a specific data type. TAMC
can handle all but very few relevant FORTRAN-77 and Fortran-90 statements.

A mayor challenge of adjoint code is providing intermediate results that are re-
quired, e.g. to evaluate derivatives of non linear operations. Efficient adjoint code
uses a combination of recalculating and restoring from a tape written previously; both
strategies can be applied by TAMC, the latter is invoked by inserting directives in the
code to be differentiated. The tapes are realized in core memory or on disks. Note
that the trade off between recomputation and storing has to be made by the user. In
this respect generation of most efficient adjoint code works still semi-automatically.
For generation of recomputations a reverse data flow analysis is applied, and, as far
as possible, only statements being absolutely necessary are included. Concerning this
key issue for generation of efficient derivative code, TAMC is unique among the AD
tools.

For the large applications discussed in section 4 recomputing all values would be
prohibitively time consuming. On the other hand, the tape space needed to store all
required values exceeds the available resources by orders of magnitude. The check-

pointing technique suggested by (10) solves this problem. It allows to use the available

resources for storing intermediate results more efficiently, at the cost of additional
model runs and is indispensable for large applications. The idea is to partition the
entire evaluation of the function by defining a number of check-points. During an
initial evaluation of the function (highest level of check-pointing), at any check-point
snapshots of the state of the model are taken, i.e. all values that are needed to redo
the evaluation for the following portion are stored. Next, working through the se-
quence of partitions in reverse order, for the current partition, first the function code
and then the derivative code are executed. The evaluation of the partition of the
function code (lowest level of check-pointing) serves to provide all required values for
the corresponding adjoint code. Note that for a time integration model, the space
per time step needed to store all those values often exceeds the space used to store
a snapshot. For some applications even a three level check-pointing scheme was nec-
essary to actually allow executing of the derivative code. For some of the derivative
codes described in section 4, the check-pointing scheme was generated semi automat-
ically by TAMC. For functions stepping through a main loop, e.g. integrations in
time, this main loop has to be splitted into nested loops, one loop for each level of
check-pointing. In addition to the directives for storing intermediate results of the
inner loop, similar directives have to be inserted in the outer loops to generate code
for storing the snapshots.

The strategy for setting the check-points depends on the platform used. Usually
access to core memory is faster than to disk. In this case the check-points should
be set in such a way that the innermost loop (the lowest level) uses all available

core memory, because this tape is accessed most frequently. This advantage of the

two tape strategy is one of the reasons why TAMC does not apply the sophisticated
original algorithm of (10), which, although needing only resources in proportion to
the logarithm of the number of required intermediated results, uses only a single tape.
The other reason is that the algorithm implemented in TAMC is much simpler. For
an n level check-pointing, TAMC can achieve a growth of the resources in proportion
to the n—th root of the number of time steps. In cases with equally fast tapes the
TAMC check-pointing algorithm is most memory efficient for tapes of equal size.
Reapplying TAMC to the first order derivative code with appropiate options, it
generates code to evaluate second order derivatives. This works for any combination
of forward and reverse modes for the two successive applications of TAMC. The most
efficient variant operates in the so-called forward over reverse mode (FOR), i.e. the
first order derivative is computed in reverse mode and the second order derivative in
forward mode. The constructed code evaluates Hessian times vector products, Hessian
times matrix products, or the full Hessian. Other tools use the forward over forward
mode (FOF) or Taylor series expansion (TSE) (1). For scalar valued functions FOR
is much faster, and the run time ratio for derivative to function code is independent
of the number of control variables, while the cost of FOR and TSE increases with this

number. In theory (11), a run time ratio below 10 should be attainable.

3 Comparison to Hand Written Derivative Code

For a number of small to medium size problems the Minpack-2 collection (2) contains

hand written code to evaluate a scalar valued function, its gradient, and the product

name | lines | short description

ept 51 | elastic-plastic torsion

ssc 54 | steady state combustion

pjb 61 | pressure distribution in a journal bearing

gl 70 | Ginzburg-Landau (1-dimensional) superconductivity
msa 90 | minimal surface area

gl2 111 | Ginzburg-Landau (2-dimensional) superconductivity

Table 1: Names of Minpack-2 problems and their number of code lines

of its Hessian times a vector. The number of independent variables can be chosen
arbitrarily. To compare the performance of TAMC generated derivative code with,
we selected six of these problems, which are representative of small to medium scale
optimization problems arising from applications in superconductivity, optimal design,
combustion, and lubrication. Table 1 gives the list of problems and their number of
Fortran code lines.

The code for function evaluation has been differentiated by TAMC to generate
code for evaluation of the gradient (adjoint code). The comparison has been carried
out on two machines, a Sun Ultra-1 and a Cray C90. To allow a fair comparison
on the Cray C90, the performance of the hand written code has been improved by
inserting vectorization directives and moving conditional statements out of the inner
most loop. The codes have been compiled by the vendors Fortran compiler with the
precision and compiler options given in Table 2.

The results for evaluation of the gradient codes are depicted in Fig. 1 for Sun

latform precision Fortran command line
p

Sun Ultra-1 | double precision | f90 -O2

Cray C90 double precision | f90 -O inline3,scalar3,vector3,task0

Table 2: Precision and compiler options used on platforms.

Ultra-1 and in Fig. 2 for Cray C90. For every test problem the relative run time,
i.e. the run time of the gradient code compared to the run time of the function
code, has been computed for different numbers of independent variables. On Sun
Ultra-1 the hand written code is in four cases slower than the TAMC generated code
(GL2,SSC,GL1,EPT). However, a remarkable difference can only be seen for the GL2
problem, while in all other cases differences are small. For GL2, a nested loop in
the function computing code is split into three loops in the hand written gradient
code: one for interior points of the domain and two for boundary points. This is
common practice in hand written adjoint codes. In contrary, TAMC does not split
the loop. Instead, interior and boundary points are handled simultaneously as is
implied by strict application of the rules TAMC is based on (8). In all cases, the
changes of the relative run time with the dimension of the problems (the number of
independent variables) are very small. On a Sun Ultra-1 performance is degraded by
cache misses. Their number depends mainly on the memory needed for all variables
in a loop compared to the cache size. For non-linear operators, this ratio is different
for function and gradient code. This explains the spikes at certain problem sizes.
The differences in relative run time are also small on a Cray C90, except again for

the GL2 problem. Here, in most cases, the relative run time increases slightly with

10

gradient to function time ratio (gl2 on sun) gradient to function time ratio (ssc on sun)

25 1.25
2} 1]
2 e
g g
5[- e -~ T T T oo ST TTTTS 1 LASF~ — — — o ____ - T T ==
1 11
0 0.5 1 15 2 25 0 05 1 15 2 25
dimension [1.e5] dimension [1.e5]
gradient to function time ratio (pjb on sun) gradient to function time ratio (gl1 on sun)

ratio

15 2 25 0 0.5 15 2 25

0 0.5 1 1
dimension [1.e5] dimension [1.e5]

gradient to function time ratio (ept on sun) gradient to function time ratio (msa on sun)

\ —— hand coded
TAMC

ratio

1 . 15 2 25 0 0.5 1 15 2 25
dimension [1.e5] dimension [1.e5]

Figure 1: Relative run time of gradient code on Sun Ultra-1 (x-axis is the number of

control variables).

the problem size.

Some recomputations in the adjoint code are independent of the problem size. If
they constitute a mayor fraction of all computations, as is the case for small problem
sizes, the ratio is almost one. For large sizes the run time of the adjoint code is dom-
inated by updating adjoint variables. Thus, the ratio depends on the complexity of
the non-linear operations in the corresponding function code. On vector machines like
the Cray C90 run time depends mainly on the efficient use of vector pipes. For these

test problems the effective vector length increases with the number of independent

11

gradient to function time ratio (gl2 on cray) gradient to function time ratio (ssc on cray)
25 13

ratio

0 0.5 1 15 2 25 0 0.5 1 15 2 25

dimension [1.é5] dimension [1.'e5]
gradient to function time ratio (pjb on cray) gradient to function time ratio (gl1 on cray)

ratio

15 2 25 "o 05 15 2 25

0 0.5 1 1
dimension [1.e5] dimension [1.e5]

gradient to function time ratio (ept on cray) gradient to function time ratio (msa on cray)

15F 7 :
4 B
4 .
1_/_%
14 —— hand coded
TAMC

0.5 12
0 05 15 2 25 0 0.5 1 15 2 25

1
dimension [1.e5] dimension [1.e5]

ratio

Figure 2: Relative run time of gradient code on Cray C90 (x-axis is the number of

control variables).

variables. Thus, on a Cray C90, in contrary to the Sun Ultra-1, the transition can be
seen at higher problem sizes.

The Hessian times vector code has only been compared on the Sun Ultra-1. The
results depicted in Fig. 3 show the relative run time of the Hessian times vector code
compared to the run time of the original function code. Only in one case (GL2) is
the TAMC generated code faster than the hand written code. As for the gradient
code, the hand written version of the Hessian times vector code for the GL2 problem

splits a nested loop into three loops. But the run time penalty for this splitting is

12

hessvec to function time ratio (gl2 on ultral0) hessvec to function time ratio (ssc on ultral0)

25 1.8
—— hand coded
20 "& 16 TAMC fw-rv
o S e mm T T T T T TS s s s s m e
*§ 15f 1 1.4
Of- =~ _____ E 12
5 1
0 02 04 06 08 1 12 14 16 0 02 04 06 08 1 12 14 16
hessvec to function time ratio (pjb on ultral0) hessvec to function time ratio (gl1 on ultral0)
3 T T T T T T T 3 T —T T—— — T T T
s [7
.
250 PR -~ 1 -~
Phs ~— oo __ - - -~ 25

2}

1.5-/_/\—_—§_/— 2 \//\—/__

0 0.2 0.4 0.6 0.8 1 12 14 16 0 0.2 0.4 0.6 0.8 1 12 1.4 1.6

ratio

hessvec to function time ratio (ept on ultral0) hessvec to function time ratio (msa on ultral0)
3 - - - - - - - 45 - - - r r r r

" " " " " " " 35 " " " " " " "
0 0.2 0.4 0.6 0.8 1 12 14 16 0 0.2 0.4 0.6 0.8 1 12 14 1.6

dimension [1.e5] dimension [1.e5]

Figure 3: Relative run time of Hessian times vector code on Sun Ultra-1.

much more pronounced: the TAMC generated code is about a factor 2 faster! For the
remaining problems, the TAMC generated code is slower, because TAMC generates
some initializations of adjoint variables to zero that could be omitted by combining
them with subsequent assignments to the same variable. Although humans can easily
detect these cases, automatization can become arbitrarily complex, because it might

involve comparison of array subscript expressions.

13

4 Performance of large CFD Codes

TAMC is being successfully applied to generate derivative computing codes for an
increasing number of large and complex CFD models used for various applications.
We select five of the most complex of these models, for which the derivative computing
code was the essential tool for several (published) applications in their respective
fields. Two of the models (MIT and HOPE) simulate the oceanic circulation, one the
coupled ocean atmosphere system (HCM), one the atmospheric transport of tracers
(TM2), and one the dynamics of ocean waves (WAM). For each of these models, in
this section, we give a brief description (together with references for more details),
summarize the respective applications, and discuss the performance of the respective
derivative computing codes.

The MIT GCM solves the incompressible Navier-Stokes equation on an Arakawa
C-grid, with optional hydrostatic approximation. The model has been applied to a
large range of scales of ocean dynamics ranging from studies of convective chimneys
to global ocean circulation estimation (25; 24) and has been developed specifically
for use on modern parallel computing platforms. Adjoints of the model have been
generated for data assimilation (30), and sensitivity studies (23). Using the forward
over reverse mode, code for evaluation of Hessian times matrix products has been gen-
erated and is used to derive error estimates of integrated properties of the optimized
ocean circulation.

The Hybrid Coupled Model (HCM) consists of an ocean model, which solves the
Navier-Stokes equation for the equatorial pacific, and a simple diagnostic atmosphere

model. It is applied to analyze and forecast (5) the El Nifio/Southern Oscillation

14

(ENSO) phenomenon (27). Christian Eckert has generated its adjoint and tangent
liner models to iteratively (22) determine the model’s most unstable modes, i.e. the
leading singular values of the product of the model’s Jacobian matrix by its adjoint
(5; 6).

The Hamburg Ocean Primitive Equation model (HOPE) (33) solves the Navier-
Stokes equation on an Arakawa E-grid. It is run for a limited domain or globally, also
coupled to atmospheric models. For a sensitivity study investigating the origin of an
ENSO event, Geert Jan van Oldenborgh and Gerrit Burgers generated the adjoint
(26) of HOPE on a tropical Pacific domain coupled to a simple diagnostic atmo-
sphere model. They used a combination of TAMC and its predecessor AMC. At two
points, which involved inversion of tridiagonal matrices, improved the performance
by replacing the generated adjoint code by hand written adjoint code.

TM2 is a three-dimensional atmospheric transport model which solves the conti-
nuity equation for an arbitrary number of passive tracers on an Eulerian grid spanning
the entire globe (13). It is driven by stored meteorological fields derived from analyses
of a weather forecast model. For sensitivity studies (18; 19) and data assimilation
(20; 17) Jacobian matrices have been computed by the model’s adjoint.

WAM is a so called third generation model for ocean wave prediction (see, e.g., 12).
It solves the two-dimensional energy balance equation for ocean wave spectra, which
describes the generation, interaction, propagation, and decay of ocean waves. Using
AMC the adjoint has been generated by (14; 15). Preparation of the code comprised
replacing a number of constructs that AMC could not yet handle and also declaration

of passive variables, i.e. those for which no derivative code is needed. Recall that the

15

Model Platform (V) | epulf, V) check-pointing
cpu(f) cpu(f)
MIT CM5 || CM5 2.5 4.5 2-level
MIT C90 || Cray-C90 2.4 44 2-level
MIT T90 || Cray-T90 2.1 5.1 3-level
HOPE Cray-90 2-3 5-6 3-level
TM2 Cray-90 14 3.4 2-level
HCM Cray-90 1.7 3.7 2-level
WAM Dec-ALPHA || 1.7 3.7 2-level

Table 3: CPU time used by the adjoint models.

latter is obsolete with TAMC, because of its capability to perform a flow dependence
analysis, and further that TAMC can handle more constructs than AMC. The adjoint
has been applied to optimize physical parameters in the wave model (15).

The numbers quantifying the performance of the adjoints of these five models
are summarized in Tables 3 and 4. The first two columns of Table 3 name the
model and the platform it runs on, for the MIT model numbers for three different
platforms are given. The next column quantifies the ratio of the CPU times for the
evaluation of the gradient to the evaluation of the function. This ratio is in between
0.7 and 3. Depending on the level of check-pointing (last column), 2-3 additional
function evaluations are needed to run these large codes for typical applications. This
additional burden is taken into account in the ratios in the fourth column. Even
MIT+ and HOPE, the two models with the three level check-pointing still achieve a

ratio below 6.

16

Model | T At steps nl tapel || n2 | tape2 n3 | tape3

MIT la 1h 8640 20x 12 | 640c || 36 | 2300 c

MIT la 1h 8640 4x12 | 128 ¢ 180 | 11000 d

MIT+ | 6a 1h 51840 || 6 192 ¢ 120 | 8000 d 72 | 5000
HOPE | 2a 2h 8640 12 250d || 30 |240d 24 | 192
T™M2 la 4h 2160 40 48 d 54 | 60d

HCM | 0.5a | 2.25h | 1920 32 58.9d || 60 | 58.2d

WAM | 10m | 3d 432 18 270d || 24 | 360d

Table 4: Resources needed for storing intermediate results with details of check-
pointing. Columns: name of model, length of integration period, time step, number
of time steps, overall number of check-points, number of check-points on lowest level,
size and kind of tape (MByte core memory (c) or disk (d)), same for level 2 and,

where implemented, level 3.

The details of check-pointing (see section 2) and the resources needed are sum-
marized in Table 4. Recall that all five models perform an integration in time. The
length of the integration period, the size of one time step and the number of time
steps are given in columns 2 to 4. In each of the models, the time varying values of a
number of different variables are required at every time step. This are mostly active
variables, except in the case of TM2, which spends an important fraction of its CPU
time to compute passive variables. Storing these speeds up the adjoint code. The
following column gives the number of time steps in the inner loop of check-pointing as

well as the tape resources needed. The letters “d” and “c” indicate whether the tapes

17

were realized on disk or in core memory. Note that some of the models (MIT and
for some variables HOPE) do not provide the current values at every time step but
instead use the same value for 12 time steps. This shortcoming considerably reduces
tape resources but results in an inaccurate derivative. However, since the physical
system simulated is changing slowly with time the departure from the exact values
is small. By inserting appropriate directives, TAMC generates such inaccurate but
more efficient derivative code. In the following columns, for the higher levels of check-
pointing, the number of check-points is given as well as the tape resources needed.
The MPI and HOPE models arrange the check-points to exploit the available core
memory for the innermost loop. For WAM, HCM, and TM2 access to both tapes is
about equally fast, and, thus, check-points are arranged to yield tapes of about equal
size.

The Hessian times vector code of the MPI model was run on a Cray-T90 and the
check-pointing strategy of the MIT, model was used. The ratio of this derivative
code to the function code is 11. Compared to the adjoint code for the MIT | model,

the sizes of both tapes roughly double.

5 Summary, Conclusions, and Perspectives

For a number of functions in the Minpack-2 collection, we have compared the per-
formance of TAMC generated adjoint code and Hessian times vector code to that of
their hand written counterparts. In summary, the efficiency of generated adjoint code

and Hessian times vector code is comparable to that of the hand written code. In

18

detail, the results depend on particular features of both the computer and the com-
piler that are used as well as on details of the implementation of both the particular
function to be differentiated and the hand written code. With increasing degree of
optimization by the Fortan compiler, the speedup for the generated codes is larger
than that of the hand written codes. For five large and complex CFD codes, we have
discussed the performance of their TAMC generated adjoint codes. Depending on the
level of check-pointing, the run time of the adjoint code is in between a factor of 3-6
of that of the model, where the pure derivative code (without the additional model
evaluations) is in between a factor of 1-3 of that of the model. The TAMC generated
code is efficient, because it allows the user to choose an optimal compromise between
recomputation and storing of required intermediate results. Also, for more efficient
use of the tape resources TAMC generates check-pointing schemes, according to the
users definition of the check-points. One of the challenges for future developments
is to automatically choose an optimal strategy for recomputation and storing, which

also includes an optimal check-pointing scheme.

Acknowledgments

The authors thank Christian Eckert, Hans Hersbach, and Geert Jan van Oldenborgh
for providing the performance details of their derivative codes. Thomas Kaminski
was supported by the Bundesministerium fiir Bildung und Forschung (BMBF) under

contract number 01LA9898/9.

19

References

[1]

[2]

[4]

[5]

[6]

Jason Abate, Christian Bischof, Alan Carle, and Lucas Roh, Algorithms and
design for a second-order automatic differentiation module, Int. Symposium on
Symbolic and Algebraic Computing (ISSAC), Association of Computing Machin-

ery, New York, 1997, pp. 149-155.

Brett M. Averick, Richard G. Carter, Jorge J. More, and Guo-Linad Xue, The
Minpack-2 Test Problem Collection, Preprint MCS-P153-0692, Mathematics and

Computer Science Division, Argonne National Laboratory, 1992.

Christian Bischof, A collection of automatic differentiation tools,

URL=http://www.mcs.anl.gov/Projects/autodiff/AD Tools/index.html.

Christian H. Bischof, George F. Corliss, Larry Green, Andreas Griewank, Ken
Haigler, and Perry Newman, Automatic differentiation of advanced CFD codes
for multidisciplinary design, Journal on Computing Systems in Engineering 3

(1992), 625-638.

Christian Eckert, On predictability limits of enso - a study performed with a
simplified model of the tropical pacific ocean-atmosphere system, Ph.D. thesis,

Max-Planck-Institut fiir Meteorologie, Hamburg, Germany, 1998.

Christian Eckert, Ralf Giering, and Mojib Latif, Optimal perturbations of a hy-
brid coupled model of el nino, 2000, submiited to Quarterly Journal of the Royal

Meteorological Society.

20

[7]

[9]

[10]

[11]

[12]

[13]

[14]

Ralf Giering, Tangent linear and Adjoint Model Compiler, users manual, 1997,

unpublished, available at http://puddle.mit.edu/~ralf/tamc.

Ralf Giering and Thomas Kaminski, Recipes for Adjoint Code Construction,

ACM Trans. On Math. Software 24 (1998), no. 4, 437-474.

P. E. Gill, W. Murray, and Margret H. Wright, Practical optimization, Academic

Press, New York, 1981.

Andreas Griewank, Achieving logarithmic growth of temporal and spatial com-
plexity in reverse automatic differentiation, Optimization Methods and Software

1 (1992), 35-54.

, Some bounds on the complexity of gradients, Jacobians, and Hessians,

Complexity in Nonlinear Optimization (Panos M. Pardalos, ed.), World Scientific

Publishers, 1993, pp. 128-161.

The WAMDI group. S. Hasselmann, K. Hasselmann, E. Bauer, P.A.E.M. Janssen,
G.J. Komen, L. Bertotti, P. Lionello, A. Guillaume, V.C. Cardone, J.A. Green-
wood, M. Reistad, L. Zambresky, and J.A. Ewing, The WAM model - o third

generation ocean wave prediction model, Journal of Physical Oceanography 18

(1988), 1775 — 1810.

Martin Heimann, The global atmospheric tracer model TM2, Tech. Rep. 10, Max-

Planck-Institut fiir Meteorologie, Hamburg, Germany, 1995.

Hans Hersbach, The adjoint of the WAM model, Scientific Report WR 97-01,

Royal Netherlands Meteorological Institute, 1997.

21

[15]

[16]

[17]

[18]

[19]

[20]

[21]

, Application of the adjoint of the WAM model to inverse wave modeling,

Journal of Geophysical Research 103 (1998), no. C5, 10,469-10,487.

Jim E. Horwedel, GRESS: A preprocessor for sensitivity studies on Fortran pro-
grams, Automatic Differentiation of Algorithms: Theory, Implementation, and
Application (Andreas Griewank and George F. Corliss, eds.), STAM, Philadel-

phia, Penn., 1991, pp. 243-250.

S. Houweling, T. Kaminski, Frank Dentener, Jos Lelieveld, and M. Heimann,
Inverse modelling of methane sources and sinks using the adjoint of a global

transport model, J. Geophys. Res. 104 (1999), no. D21, 26,137-26,160.

T. Kaminski, R. Giering, and M. Heimann, Sensitivity of the seasonal cycle of
CO2 at remote monitoring stations with respect to seasonal surface exchange
fluzes determined with the adjoint of an atmospheric transport model, Physics

and Chemistry of the Earth 21 (1996), no. 5-6, 457-462.

T. Kaminsgki, M. Heimann, and R. Giering, A coarse grid three-dimensional global
inverse model of the atmospheric transport, 1, Adjoint model and Jacobian ma-

triz, Journal of Geophysical Research 104 (1999), no. D15, 18,535-18,553.

, A coarse grid three dimensional global inverse model of the atmospheric

transport, 2, inversion of the transport of COs in the 1980s, Journal of Geophys-

ical Research D15 (1999), no. 104, 18,555-18,581.

Koichi Kubota, PADRE2 - Fortran precompiler for automatic differentiation and

estimates of rounding error, Computational Differentiation: Techniques, Appli-

22

[22]

[23]

[24]

[25]

[26]

[27]

[28]

cations, and Tools (Martin Berz, Christian Bischof, George Corliss, and Andreas

Griewank, eds.), STAM, Philadelphia, Penn., 1996, pp. 367-374.

C. Lanczos, Applied analysis, Prentice Hall (1957).

Jochem Marotzke, Ralf Giering, K. Q. Zhang, Detlef Stammer, Chris Hill, and
Tong Lee, Construction of the adjoint MIT ocean general circulation model and
application to Atlantic heat transport sensitivity, Journal of Geophysical Research

104 (1999), no. 29, 529-547.

John Marshall, Alistair Adcroft, Chris Hill, Lev Perelman, and Curt Heisey, A
finite-volume, incompressible Navier Stokes model for studies of the ocean on
parallel computers, Journal of Geophysical Research 102 (1997), no. C3, 5753~

5766.

John Marshall, Chris Hill, Lev Perelman, and Alistair Adcroft, Hydrostatic,
quasi-hydrostatic, and nonhydrostatic ocean modeling, Journal of Geophysical

Research 102 (1997), no. C3, 5733-5752.

Geert Jan van Oldenborgh, Gerrit Burgers, Stephan Venzke, Christian Eckert,
and Ralf Giering, Tracking down the delayed ENSO oscillator with an adjoint

OGCM, Monthly Weather Review 127 (1999), 1477-1495.

S. G. H. Philander, El Nino, La Nina, and the Southern Oszillation, Academic,

San Diego, 1990.

N. Rostaing, S. Dalmas, and A. Galligo, Automatic differentiation in Odyssée,

Tellus (1993), 558-568.

23

[29]

[30]

[31]

[32]

[33]

Jens Schroéter, Driving of non-linear time dependent ocean models by observations
of transient tracer - a problem of constrained optimization., Ocean Circulation
Models: Combining Data and Dynamics (D.L.T. Anderson and J. Willebrand,

eds.), Kluwer Academic Publishers, 1989, pp. 257—285.

Detlef Stammer, Carl Wunsch, Ralf Giering, Qian Zhang, Jochem Marotzke,
John Marshall, and Chris Hill, The Global Ocean Clirculation estimated from
TOPEX/POSEIDON Altimetry and a General Circulation Model, Tech. Re-
port 49, Center for Global Change Science, Massachusetts Institute of Tech-

nology, 1997.

Oliver Talagrand, The use of adjoint equations in numerical modelling of the
atmospheric circulation, Automatic Differentiation of Algorithms: Theory, Im-
plementation, and Application (Andreas Griewank and George F. Corliss, eds.),

SIAM, Philadelphia, Penn., 1991, pp. 169-180.

Eli Tziperman and W. C. Thacker, An optimal control/adjoint equation approach
to studying the ocean general circulation, Journal of Physical Oceanography 19

(1989), 1471-1485.

J.-0O. Wolff, Ernst Maier-Reimer, and S. Legutke, The Hamburg Ocean Primitive
Equation model HOPE, Technical Report 13, Max-Planck-Institut fiir Meteorolo-

gie, 1997.

24

