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[1] This paper combines an atmospheric transport model and a terrestrial ecosystem model
to estimate gross primary productivity (GPP) and net ecosystem productivity (NEP) of the
land biosphere. Using atmospheric CO2 observations in a Carbon Cycle Data Assimilation
System (CCDAS) we estimate a terrestrial global GPP of 146 � 19 GtC/yr. However,
the current observing network cannot distinguish this best estimate from a different
assimilation experiment yielding a terrestrial global GPP of 117 GtC/yr. Spatial estimates
of GPP agree with data-driven estimates in the extratropics but are overestimated in the
poorly observed tropics. The uncertainty analysis of previous studies was extended by using
two atmospheric transport models and different CO2 observing networks. We find that
estimates of GPP and NEP are less sensitive to these choices than the form of the prior
probability for model parameters. NEP is also found to be significantly sensitive to the
transport model and this sensitivity is not greatly reduced compared to direct atmospheric
transport inversions, which optimize NEP directly.
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1. Introduction

[2] Concern about the current and future behavior of the
terrestrial carbon cycle has stimulated the research commu-
nity to build complex observing systems. These have focused
on the net carbon flux since this plays the most direct role in
regulating atmospheric CO2. However, for a range of ques-
tions about the carbon cycle, we also need to know about the
productivity of the terrestrial biosphere. The gross primary
productivity (GPP) is the total amount of CO2 that is taken up
by plants by photosynthesis [e.g., Farquhar et al., 1980]. The
net primary productivity (NPP) is the difference between
GPP and total plant respiration [e.g., Lieth, 1973;Clark et al.,
2001a]. NPP is classically regarded as equal to the positive
increment in biomass as a result of growth. The net ecosys-
tem production (NEP), which equals the net land-atmosphere
CO2 flux of the undisturbed biosphere, is NPP minus the
flux from respiration by heterotrophs and decomposers [e.g.,
Reichstein et al., 2005]. In contrast to the GPP, the net
primary productivity is well known since it is linked to con-
sumption of harvested biomass [e.g.,Malmström et al., 1997;

Prince et al., 2001; Imhoff et al., 2004; Imhoff and Bounoua,
2006]. Moreover, the impact of CO2 concentration on GPP is
subtle [e.g., Nowak et al., 2004; McMurtrie et al., 2008]. It
seems worthwhile, therefore, to ask what we can learn from
current observations of atmospheric CO2 about terrestrial
productivity.
[3] As soon as we seek to estimate primary productivity we

face a different measurement problem than for the net flux.
Because of its commercial importance there are relatively
direct measures of NPP (e.g., crop and forest inventory data).
These, however, are usually measures of above ground bio-
mass increment or harvested biomass, which does not rep-
resent all the components of NPP [e.g., Clark et al., 2001b].
Moreover, these measures are not usually simulated by ter-
restrial ecosystem models. Furthermore, although they are
spatially much more extensive than the pointwise net flux
derived from eddy covariance measurements [e.g., Foken
and Wichura, 1996; Aubinet et al., 2000; Baldocchi, 2003;
Rebmann et al., 2005; Reichstein et al., 2005; Papale et al.,
2006; Lasslop et al., 2010], they still under-sample the vari-
ability of the unmanaged biosphere. Clark et al. [2001b]
showed various biases with the inventory method, the big-
gest one being the problem of measuring fine root turnover.
[4] The large amount of NEP data at flux tower sta-

tions measured by the eddy covariance technique has been
exploited in concert with satellite and climate data to derive
terrestrial GPP [Beer et al., 2010; Yuan et al., 2010]. The
NEP data at flux tower sites can be partitioned into GPP and
ecosystem respiration by using several methods mainly based
on flux partitioning algorithms [e.g., Reichstein et al., 2005;
Lasslop et al., 2010]. Empirical relationships between GPP
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and explanatory variables such as the fraction of absorbed
photosynthetically active radiation, short-wave radiation,
precipitation, air temperature, and vapor pressure deficit at
the tower sites can then be applied to large-scale grids of
these explanatory variables. Since the eddy covariance sys-
tem also measures latent heat, evapotranspiration can also
be an explanatory variable [Beer et al., 2007, 2009] which
is at large scale also constrained by runoff data. Such a
data-driven approach has the advantage of high spatial (up
to 1 km) and temporal resolution (up to 10 days), but this
approach has no predictive capability.
[5] In contrast, a process-oriented mechanistic model of

photosynthesis at leaf level [Farquhar et al., 1980] in con-
junction with assumptions about autotrophic respiration and
a model of heterotrophic respiration can be used to estimate
large-scale GPP and NEP [Knorr, 2000; Sitch et al., 2003;
Krinner et al., 2005; Kattge et al., 2009; Oleson et al., 2010].
Such a model requires atmospheric and soil conditions as
inputs. The parameters in such models can be constrained by
assimilation techniques as employed in the Carbon Cycle
Data Assimilation System (CCDAS) [Rayner et al., 2005].
We use this approach in this study.
[6] A data assimilation system has two primary

components:
[7] i) a deterministic dynamical model that calculates the

evolution of a set of state variables given an initial condition,
forcing and a set of process parameters of the model and a
series of observation operators that map the state variables of
the model onto quantities amenable to observation.
[8] ii) an assimilation system that consists of an algorithm

to adjust a subset of the state variables, initial conditions
and/or process parameters to reduce the mismatch with
observations. Usually any prior information on the variables
which are adjusted are also taken into account (see Kaminski
et al. [2002, 2003] and Rayner et al. [2005, and references
therein] for the underlying methodology).
[9] Following Kaminski et al. [2003] and Rayner et al.

[2005] our main observable in this work is atmospheric
CO2 concentration. This data set has also been used for
estimates of surface flux without the use of dynamical con-
straints in an approach usually called direct inversion [e.g.,
Gurney et al., 2002, 2004; Rayner et al., 2008]. In both the
direct inversion and the CCDAS approach, net fluxes are
coupled to atmospheric CO2 concentrations by atmospheric
transport. Hence their estimates are sensitive to uncertain-
ties in transport models and the choice of network. These
uncertainties have been obtained for direct inversions [Gurney
et al., 2002; Law et al., 2003; Gurney et al., 2004; Baker
et al., 2006]. Additionally, almost all aspects of the net flux
pattern, its mean spatial structure, seasonal cycle and inter-
annual variability were found to be sensitive to transport
models and networks used in the TransCom exercises [e.g.,
Gurney et al., 2003, 2004; Baker et al., 2006]. Given the
direct links between various model parameters and these
large-scale characteristics it seems likely that inferred process
parameters of underlying models of a CCDAS will be simi-
larly sensitive, but this has never been tested. This pre-
supposes that the atmospheric CO2 concentrations contain
information on the process parameters of the model. Thus the
aim of the paper is twofold: 1) to extend the CCDAS to
estimate GPP and 2) to carry out a more detailed analysis of
the sensitivity of both NEP and GPP to the configuration of

the CCDAS (i.e., transport model, CO2 observing network,
the form of the probability densities on the prior parameters
of the underlying biosphere model).
[10] The outline of the paper is as follows:
[11] First, we briefly describe the main principles of the

CCDAS (section 2). In section 3, the set-up of CCDAS as
used here is described. We discuss the sensitivity of the
process parameters of CCDAS to i) two representations of
the tracer transport model TM (TM2 [Heimann, 1995] and
TM3 [Heimann and Körner, 2003]) and ii) two observing
networks (38 and 68 sites). In addition, we discuss results
from two probability distributions for the prior parameters in
section 4. The inferred GPPs are presented in section 5
together with the comparison of the regional integrals of
our best GPP estimates to the few existing estimates at global
and ecosystem scales. Then, the sensitivities of both the
inferred NEP and GPP to the configuration of the CCDAS
(i.e., transport model, CO2 observing network, the form of
the probability densities on the prior parameters of the under-
lying biosphere model) are given in section 6. In section 7,
results are discussed. Finally, conclusions and remarks for a
possible improvement of the system are given in section 8.

2. Methodology

[12] The CCDAS in this study has two primary compo-
nents: a biosphere model and a transport model. The process
parameters of the biosphere model are first optimized by
reducing the mismatch between observed CO2 concentra-
tions and simulations by the transport model. The modeled
concentrations are obtained by using the modeled NEP fluxes
together with the other components of the CO2 exchange
fluxes with the atmosphere (i.e., ocean flux, land use, and
fossil fuel emissions). In this section and in the next, we
describe the CCDAS together with all the pieces that com-
pose the system and how these elements are combined to
fulfill the objectives of the paper.

2.1. CCDAS System

[13] The methodological detail of the CCDAS is described
by Rayner et al. [2005] and Scholze et al. [2007]. Here we
reprise only the generalities of the system and the points
where we differ.
[14] CCDAS consists of a biosphere model BETHY

(Biosphere Energy Transfer Hydrology) [Knorr, 2000] and
a versatile atmospheric transport model, together with CO2

fluxes representing ocean flux, land use change, and fossil
fuel emission [Rayner et al., 2005; Scholze et al., 2007]. The
process parameters of the biosphere model are optimized by
using a Bayesian inference scheme [Enting, 2002; Tarantola,
2005]. This inference scheme requires the minimization
of a cost function representing the negative log likelihood.
The cost function includes contributions from the model-
observation mismatch and the departure of parameter values
from their prior estimates.
[15] The cost function hence includes the uncertainties

in both the transport model and observations and the prior
parameters in the form of covariance matrices. Parameters are
uncorrelated in our formulation. The cost function is mini-
mized using the limited memory Quasi-Newton algorithm
M1QN3 V3.2 [Gilbert and Lemaréchal, 1989]. The required
derivatives are generated automatically from the model code
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using the Transformation of Algorithms in Fortran (TAF)
tool [Giering and Kaminski, 1998; Kaminski et al., 2003].

2.2. Models and Data

2.2.1. Terrestrial Carbon Cycle Model BETHY
[16] BETHY, the core model of CCDAS, is a process-

based model of the terrestrial biosphere which simulates
carbon assimilation and plant and soil respiration, embedded
within a full energy and water balance [Knorr, 2000].
BETHY is structured in four components: (1) energy and
water balance, (2) photosynthesis, (3) phenology, and
(4) carbon balance. It uses 13 plant functional types (PFT)
based on the work of Wilson and Henderson-Sellers [1985]
(Figure 1) and up to three PFTs can be present within a
grid cell with their amount specified by their fractional
coverage. The version of BETHY used here is imple-
mented on a 2� � 2� grid box, with 3462 land grid points.
BETHY is driven by observed climate and radiation data
over the period 1979–1999 [Nijssen et al., 2001].
[17] BETHY is used here in two forms: a full form and a

simplified one. In its full form, the model is used to optimize
the parameters related to water balance, temperature-limited
phenology, and overall fractional vegetation cover against
remotely sensed vegetation greenness [Knorr and Schulz,
2001]. The optimized parameters from the full version of
BETHY are used in the simplified form of BETHY where
they are not optimized anymore (see section 2.2.4 for details).
A complete description of the simplified version of BETHY
used in this study is given by Rayner et al. [2005]. Here we
review the parts of the formulation on GPP, NPP, and NEP
which we need later.

[18] For GPP, we follow the parameterizations of
Farquhar et al. [1980] and Collatz et al. [1992] for C3 and
C4 plants, respectively. GPP is calculated as the minimum of
an electron transport limited rate, JE, and a rate, JC, limited by
the carboxylation enzyme Rubisco. The symbols in this
section related to the BETHY model are also defined in the
notation section.

GPP ¼ min JC ; JE½ � for C3 plant
min Je; Jc; Ji½ � for C4 plant

�
ð1Þ

where

JC ¼ Vmax
Ci � G∗

Ci þ KC 1þ Ox=Ko
� �

" #
ð2Þ

JE ¼ aqIJmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 max þ a2

qI2
p

" #
Ci � G∗

4 Ci þ 2G∗ð Þ
� �

ð3Þ

Je ¼ Vmax

Jc ¼ kCi

Ji ¼ aiI

8<
: ð4Þ

With Vmax the carboxylation capacity of the leaf, Ci the
leaf CO2 concentration (note that the concentration of the
atmospheric CO2 concentration is kept constant at 355 ppm)
minus the net CO2 assimilated by the leaf, G* the CO2

compensation point, KC and Ko the Michaelis-Menten
constants for CO2 and O2, respectively, Ox the O2 partial
pressure, aq the quantum efficiency, Jmax the maximum
electron transport, I the photosynthetically active radiation
(PAR) absorption rate, ai the integrated C4 quantum effi-
ciency, k the PEP case (the initial CO2 fixating enzyme in
C4) CO2 specificity.
[19] Following Farquhar [1988], G* is linearly dependent

on vegetation temperature with aG,T being the dependence
parameter. k is linearly dependent on Vmax at 25�C with aJ,V
the linear dependence parameter.
[20] The temperature dependence of Vmax, KC and Ko, k

are computed based on their respective quantity at 25�C
(i.e., Vmax

25 , KC
25, Ko

25, k25) and their corresponding activation
energy E [Rayner et al., 2005].
[21] Two kinds of parameters involved in the computation

of GPP are optimized (Table 1): 1) vegetation type dependent
parameters (Vmax

25 and aJ,V) and 2) global parameters (aq, ai,
aG,T , KC

25, Ko
25, EVmax, EKC, EKo, Ek). The exponent 25 stands

for the value of the parameter at 25�C. Altogether, 35 param-
eters relevant to GPP are optimized (Table 1).
[22] The net primary productivity NPP is computed as a

gross uptake of CO2 by the leaves (GPP) minus total auto-
trophic respiration which includes plant maintenance respi-
ration, RM, and growth respiration RG. RG is parameterized
as a function of NPP, while RM is a function of the leaf
dark respiration Rd [Knorr, 2000]:

RM ¼ Rd=fR;leaf ð5Þ

RG ¼ fR;growth � 1
� �

NPP ¼ fR;growth � 1
� �

GPP � RM � RGð Þ ð6Þ

Figure 1. Distribution of the dominant PFT per grid. The
labels of the PFTs are: Crop: Crop plant, Welt: Swamp
vegetation, Tund: Tundra, C4Gr: C4 grass, C3Gr: C3 grass,
DecShr: Deciduous shrub, EvShr: Evergreen shrub, DecCn:
Deciduous coniferous tree, EvCn: Evergreen coniferous tree,
TmpDec: Temperate broadleaved deciduous tree, TmpEv:
Temperate broadleaved evergreen tree, TrDec: Tropical
broadleaved deciduous tree, TrEv: Tropical broadleaved
evergreen tree. Locations of the 70 CO2 observational sites
used in this study are shown: TM3/38 configuration uses
38 stations (open circles). TM3/68 uses both the 38 stations
of TM3/38 plus the 30 stations marked in triangles (both
open and filled). TM2/41 uses the 38 stations of TM3/68
and three additional stations (2 filled circles and 1 filled
triangle).

KOFFI ET AL.: BIOSPHERE FLUXES INFERRED FROM A CCDAS GB1024GB1024

3 of 15



where fR,leaf is the leaf fraction of the maintenance respira-
tion and fR,growth stands for the amount of carbon respired for
a unit gain in vegetation biomass. They are both treated as
parameters. Relationships between Rd and Vmax at 25�C and
their dependence on both temperature and its activation

energy ERd are detailed by Rayner et al. [2005]. The param-
eters fR,leaf, fR,growth and ERd are optimized (Table 1).
[23] The net ecosystem productivity NEP which quantifies

the net CO2 flux between the atmosphere and the biosphere is
defined as the net primary productivity NPP minus

Table 1. Controlling Parameters and Their Initial and Optimized Values Obtained From 6 Configurationsa

Parameter Prior Value Prior Uncertainty TM2/41 TM3/38 TM3/68 TM2/41b TM3/38b TM3/68b

Vmax(TrEv) 60 12 54.1 58.7 58.3 60.6 61.1 63.8
Vmax(TrDec) 90 18 53.3 48.2 59.5 81.1 78.4 73.5
Vmax(TmpEv) 41 8.2 45 43.4 44.5 45.4 38.8 39.7
Vmax(TmpDec) 35 7 95.1 83.3 102.4 124.2 128.4 149.2
Vmax(EvCn) 29 5.8 30.8 21.2 10.7 36.1 29.1 21.9
Vmax(DecCn) 53 10.6 122.6 100.7 98.8 184.7 148.1 136.4
Vmax(EvShr) 52 10.4 101.8 106.7 84.4 162.5 166.3 168.9
Vmax(DecShr) 160 32 84 75.5 70.9 93.3 107.5 96.1
Vmax(C3Gr) 42 8.4 25.4 20.1 22.2 21.8 19.2 18.9
Vmax(C4Gr) 8 1.6 �0.1 �0 �0.1 0.7 0.7 0.7
Vmax(Tund) 20 4 22.2 5.3 9 24.8 8.2 8.5
Vmax(Wetl) 20 4 �8.2 �11.7 �7.7 9.6 9.6 9.3
Vmax(Crop) 117 23.4 24 25.7 19.2 46.8 47.4 47.9
aJ.V(TrEv) 1.96 0.098 1.98 1.86 1.8 2.02 1.97 1.97
aJ.V(TrDec) 1.99 0.0995 2.03 1.87 1.96 2.06 2.01 2.02
aJ.V(TempEv) 2 0.1 2 2 2.01 2.01 2 2
aJ.V(TmpDec) 2 0.1 1.98 2.17 2.16 1.84 2.05 2.03
aJ.V(EvCn) 1.79 0.0895 1.87 1.8 1.8 1.92 1.84 1.83
aJ.V(DecCn) 1.79 0.0895 1.86 1.88 1.88 1.92 1.84 1.83
aJ.V(EvShr) 1.96 0.098 1.96 1.98 1.95 1.96 2 1.99
aJ.V(DecShr) 1.66 0.083 1.69 1.67 1.76 1.67 1.67 1.66
aJ.V(C3Gr) 1.9 0.095 1.9 1.94 1.92 1.89 1.9 1.9
aJ.V(C4Gr) 140 28 127 135 138 133 137 130
aJ.V(Tund) 1.85 0.0925 1.86 1.85 1.86 1.87 1.84 1.84
aJ.V(Wetl) 1.85 0.0925 1.84 1.85 1.85 1.83 1.82 1.83
aJ.V(Crop) 1.88 0.094 1.85 1.88 1.87 1.87 1.88 1.88
fR.leaf 0.4 0.1 0.3 0.2 0.2 0.2 0.3 0.3
fR.growth 1.25 0.0625 0.56 0.84 0.71 1.11 1.12 1.11
Q10f 1.5 1.5 1.38 1.44 1.84 1.37 1.3 1.32
Q10s 1.5 1.5 3.61 2.24 0.72 3.09 3.11 3
tf 1.5 3 8.72 9.01 20.88 8.52 7.6 7.57
k 1 10 0.83 0.49 0.83 0.78 0.5 0.54
fs 0.2 2 0.44 0.44 0.29 0.53 0.57 0.56
ERd 45000 2250 33648 42984 34430 32518 39272 39829
EVmax 58520 2926 82137 83197 82299 62363 70479 67212
EKO 35948 1797.4 35843 35655 35403 37383 39183 39433
EKC 59356 2967.8 77266 66258 70869 54559 53222 53901
Ek 50967 2548.35 50833 50890 50943 50804 50803 50760
aq 0.28 0.014 0.44 0.38 0.43 0.56 0.48 0.51
ai25 0.04 0.002 0.04 0.04 0.04 0.04 0.04 0.04
KC25 460 23 413 373 369 460 474 478
KO 330 16.5 342.4 353 352.9 326 319.8 320.6
aG.T 1.7 0.085 0.81 1.22 1.08 0.73 1.01 0.94
b(TrEv) 1 0.25 0.88 0.82 0.79 0.93 0.86 0.88
b(TrDec) 1 0.25 0.7 1.06 1.01 1.01 1.2 1.15
b(TmpEv) 1 0.25 0.02 0.68 0.13 0.57 1.04 1.02
b(TmpDec) 1 0.25 0.64 0.67 0.83 0.83 0.75 0.79
b(EvCn) 1 0.25 1.34 1.14 0.91 1.29 1.17 1.12
b(DecCn) 1 0.25 0.15 0.87 1.82 0.35 0.75 0.84
b (EvShr) 1 0.25 0.77 0.43 0.02 0.56 0.65 0.58
b(DecShr) 1 0.25 2.4 1.94 2.84 6.47 3.23 2.66
b (C3Gr) 1 0.25 1 0.88 0.7 0.82 0.73 0.82
b (C4Gr) 1 0.25 0.98 0.97 0.72 0.52 0.98 1.01
b (Tund) 1 0.25 0.92 0.63 0.66 0.9 0.79 1.03
b (Wetl) 1 0.25 0.39 0.64 0.48 4.05 1.31 1.42
b (Crop) 1 0.25 0.59 1.33 1.46 0.57 1.16 1.14
Offset 338 1 336 337 338 336 337 337

aTM2/41 denotes optimization by using TM2 data and 41 stations. TM3/38 (TM3/68) denotes optimization by using TM3 model and 38 (68) sites. Units
are: Vmax, mmol(CO2)m

�2 s�1; aJ,T activation parameter; aG,T mmol(CO2)mol(air)�1(C)�1; activation energies E, J/mol; tf, years; offset, ppm; all other
parameters are unitless and correspond to values at 25�C. KC is multiplied by 106. TM2/41, TM3/38, and TM3/68 stand for optimizations by using
Gaussian PDF on prior parameters, while TM2/41b, TM3/38b, and TM3/68b stand for lognormal PDF. When considering the lognormal PDF, we use a
Gaussian PDF for 15 parameters: aG,T, aJ,V (PFT dependent thus 13 parameters), and the offset (i.e., the atmospheric CO2 at the first year of the study).
Note that for aG,T, aJ,V, and the offset, there is not any reason to use lognormal PDF since these parameters can have negative values. The acronyms
relevant for PFT are described in Figure 1. For other details on the definition of the parameters, see the notation section.
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heterotrophic respiration (RS), which is composed of the
respiration from short-lived (fast) litter pool RS,f and a long-
lived (slow) soil carbon pool RS,s

NEP ¼ NPP � RS ¼ NPP � RS;f � RS;s ð7Þ

where

RS;f ¼ Cf 1� fsð Þ wkQ10f
Ta=10

� �
=tf

RS;s ¼ Cs wkQ10s
Ta=10

� �
=ts

�
ð8Þ

with fs, the fraction of decomposition from the fast pool that
goes to the long-lived soil carbon pool. Cf and Cs stand for
the sizes of the short-lived and the slow litter pools, respec-
tively. Other variables are: w the soil moisture, Ta the air
temperature, k the soil moisture dependence parameter, Q10f

and Q10s temperature dependence parameters relative for fast
and slow pools, respectively. tf and ts the pool turnover
times at 25�C relative to fast and slow pools, respectively.
The parameters fs, Q10f, Q10s, k, and tf are optimized
(Table 1).
[24] Following Rayner et al. [2005] we formulate NEP as a

PFT-dependent storage efficiency multiplied by NPP (which
varies by grid point). By further assuming that the size of the
slow pool does not change over the 21-year study period we
can diagnose the mean respiration from the slow pool:

NEP ¼ NPP 1� 1

b

� 	
ð9Þ

The overlying bar denotes the time averages of the quantity
in question over the simulation period at each grid cell. The
scaling factor b (taken as a parameter) is vegetation type
dependent with b = 1 (first guess) represents a carbon neutral
terrestrial biosphere, b > 1 characterizes a net uptake of CO2

by vegetation and 0 < b < 1, a net source of CO2 from the
vegetation into the atmosphere. The parameter b which is
PFT dependent is optimized. Altogether, 18 parameters related
to NEP are optimized (Table 1).
[25] In total we optimize 56 biospheric parameters relevant

for GPP, NPP, and NEP plus one initial condition repre-
senting the atmospheric CO2 at the first year of the study
(Table 1).
2.2.2. Calculation of Uncertainty in BETHY Fluxes
[26] Rayner et al. [2005] demonstrated how to project

the parameters’ uncertainties forward through the computed
carbon fluxes from BETHY. The uncertainty C(y) in the
simulated quantity of interest y(x) (i.e., GPP, NPP, NEP) is
approximated to a first order by:

C yð Þ ¼ dy xopt
� �
dx

1

H

dy xopt
� �
dx

� 	T

ð10Þ

H (the Hessian matrix) is the second derivative of the cost
function with respect to the parameters x at value xopt. The
symbol T denotes the transposed matrix. The inverse of H
gives the uncertainty in x. We consider both the observations
and the prior of the parameters x to have a Gaussian Proba-
bility Density Function (PDF), which then also results in a

Gaussian PDF for the optimized values of x [Tarantola,
1987]. The posterior uncertainty is expressed by:

H ¼ d 2J xopt
� �
dx2

ð11Þ

With J(xopt) the cost function computed for the optimized
values of the parameter xopt.
2.2.3. Transport Models
[27] For the tracer transport we use pre-computed transport

Jacobians, i. e. sensitivities of concentrations to fluxes at
every pixel. We use the Jacobians of Kaminski et al. [1999]
for TM2 and Rödenbeck et al. [2003] for TM3. The key
difference between the models is the spatial resolution.
TM2 has a resolution of 8 degrees latitude by 10 degrees
longitude with 9 levels while TM3 uses 4 degrees of latitude
by 5 degrees of longitude with 19 levels. TM2 and TM3
use ECMWF (European Centre for Medium-Range Weather
Forecasts) and NCEP (National Centers for Environmental
Prediction) meteorological fields as input, respectively.
[28] The Jacobians were computed over the 1979–1999

period by using only one year of winds for TM2, while TM3
used meteorological forcing that varied each year. The base
models are described by Heimann [1995] for TM2 and
Heimann and Körner [2003] for TM3. Both versions TM2
and TM3 have participated in TransCom, a model inter-
comparison experiment based on fossil fuel CO2 emissions
and annually balanced CO2 fluxes [Law et al., 1996; Gurney
et al., 2003].
[29] Since TM2 or TM3 allow only Jacobians at particular

stations, we have used the global climate model LMDZ-
INCA [e.g., Hauglustaine et al., 2004] to compute CO2

concentrations at any other stations. The model has 19 levels
and a horizontal resolution of 2.5� in latitude and 3.75� in
longitude. LMDZ is an online model i.e., it generates its
dynamics internally along with tracer transport. To ensure
realistic simulation of actual meteorological conditions the
model is nudged toward ECMWF reanalyses.
2.2.4. Background Fluxes
[30] One problem in drawing any inferences about the

terrestrial biosphere from atmospheric observations is the
contribution of other CO2 fluxes. These sources are fossil
fuel emissions, ocean fluxes, and fluxes related to land use
change. They are not perfectly known, and they impact the
concentration of CO2. Since we use the same type of data as
in the work by Scholze et al. [2007], only the main patterns of
these background fluxes are described here. For the fossil
fuel fluxes, we use the flux magnitudes from Marland et al.
[2001] for the years 1979 to 1995 and a constant magnitude
of 6.5 GtC/yr for the years 1996–1999. We use two different
patterns distributing the fossil emissions corresponding to
the years 1990 and 1995. Fields are taken from Andres et al.
[1996] for 1990 and Brenkert [1998] for 1995. For the years
prior to 1991, we use the 1990 pattern solely and for the
years following 1994 we use the pattern for 1995. For the
years 1991 to 1994, we linearly interpolate between the two
spatial patterns. The shortcoming of these data, as we use
them, may be the lack of seasonality in the flux. The ocean
fluxes are taken from two sources: i) The flux pattern and
magnitude from Takahashi et al. [1999] are used to describe
the flux climatology (both annual mean and seasonal cycle)
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and ii) an estimate of inter-annual variability in ocean flux
taken from the study of Le Quéré et al. [2003] for years 1980
to 1998 is then added. The flux caused by land-use change is
taken from the study of Houghton et al. [1987] that estimates
the annual mean flux. Following Scholze et al. [2007], we
divide the total annual values in 12 to have monthly values
as multipliers of the annual spatial pattern [Houghton, 2008].
2.2.5. Other Data
[31] As mentioned earlier, BETHY is optimized in two

stages with two different data sets. First, to optimize the
parameters related to water balance, temperature-limited
phenology, and overall fractional vegetation, remotely sensed
fAPAR (fraction of Absorbed Photosynthetically Active
Radiation) data are used [Knorr and Schulz, 2001]. The
authors estimated the error in fAPAR to lie between 0.05
and 0.1. This step provides leaf area index (LAI) and plant
available soil moisture w (as a fraction of maximum soil
water capacity), which are prescribed in the simplified form
of the model to assimilate atmospheric CO2 concentration
observations. Thus, LAI and w parameters are not optimized
with respect to atmospheric CO2 concentrations.
[32] Second, to optimize the parameters related to

BETHY carbon fluxes, the monthly mean atmospheric
CO2 concentration data from the GLOBAVIEW database
[GLOBALVIEW-CO2, 2004, hereinafter GV] and some
additional CO2 measurement sites are considered (Figure 1).
The processing of the GLOBALVIEW data for 41 sites used
for the TM2 model is described by Rayner et al. [2005],
while the treatment of these data for the 68 sites for TM3
is given by Rödenbeck et al. [2003]. For the 27 additional
sites allowed for the TM3 model, we do not have any pre-
computed Jacobians for TM2. Consequently, for the study of
the sensitivity of our results to transport model, only a com-
mon subset of the sites allowed by both TM2 and TM3
models are considered, as described in section 3. The treat-
ment of uncertainties for CO2 concentrations follows that of
Rayner et al. [2005]. The GLOBALVIEW-CO2 uncertainties
in the monthly means are derived from the residual standard
deviations [Masarie and Tans, 1995]. Following Rayner
et al. [2005], we add a minimum uncertainty of 0.5 ppm
to account for additional transport model error. Our data
uncertainties range from 0.51 ppm to 4.9 ppm.
2.2.6. Prior Values and Uncertainties
[33] According to the general Bayesian methodology we

incorporate prior information on model parameters (Table 1).
For physical parameters the values are taken from literature
summarized by Knorr [2000]. For other values such as the
beta storage efficiency (b), we commence with reasonable
values, which do not take account of previous atmospheric
studies (since it is important to avoid double-counting
information). Thus we start with the assumption of a bal-
anced biosphere (b = 1) with uncertainties in b generally
assumed to be large since there are little data on which to base
these (Table 1). Finally prior information not only includes
results of previous studies but also knowledge of the physical
limits of parameters. For example many parameters are
physically limited to positive values. Such a bounding is not
implemented in the optimization algorithm M1QN3 we use.
For these we implement an exponential transform so that,
while the parameter follows a Gaussian probability distribu-
tion with mean m and standard deviation s the model trans-
forms this as exp(m � s), that is the physical parameter

follows a lognormal distribution. We implement this for
42 of the 56 biosphere parameters (Table 1).

3. Experimental Setup

[34] Three configurations are built to optimize the param-
eters of BETHY: TM2/41: TM2 Jacobians with observations
at 41 sites from GV network. TM3/38: TM3 Jacobians with
38 sites used in both TM2 and TM3. The CO2 concentration
data for TM2 and TM3 are computed slightly differently.
Thus, we repeated TM3/38 by using an exact subset of
TM2/41 observations (hereafter TM3/38*) and produced
very similar results to TM3/38. When quantifying the root
mean square deviation both in space and time (rsmd) between
the optimized NEPs from these three above mentioned con-
figurations, results show smallest rmsd between TM3/38 and
TM3/38*. Therefore, the optimized parameters of TM3/38*
will not be considered in the following sections. TM3/68:
TM3 Jacobians with observations at 68 sites, which is con-
sidered as the preferred formulation for the optimization.
[35] The locations of the sites under study are shown in

Figure 1. We append “b” to the experiment name when we
consider the lognormal transform discussed previously.

4. Optimized Parameters

[36] The overall quality of the fit to data is embodied in the
value of the cost function at the minimum. The final values of
the cost function obtained after about 2200 iterations (i.e.,
number of iterations from which the value of the cost func-
tion does not change much) of each of the 6 configurations of
model/data under study are considered: These configurations
are TM2/41, TM3/38, and TM3/68 relevant for optimizations
by using a Gaussian PDF on prior parameters and TM2/41b,
TM3/38b, and TM3/68b when using the lognormal PDF
(Table 1). The reduced chi square (c2) which describes the
average misfit of optimized simulations and observations
plus the departures is computed for each configuration of the
model/data. It should be around 1 for an optimal system
while our optimizations yield values around 2. Stations more
subject to background fluxes (e.g., oceanic stations) con-
tribute disproportionately to this value suggesting some of
the problem may lie with the background fluxes rather than
the biosphere model. We do not adjust observational uncer-
tainties to account for this mismatch but the result should be
borne in mind when considering posterior uncertainties.
[37] Table 1 shows the optimized parameters of BETHY

for the six configurations of model/data. All optimizations
yield large shifts from the prior parameters for i) the photo-
synthesis parameter Vmax of some PFTs (DecCn, EvShr,
C4Gr, Wetl, Crop; see Figure 1 for location and definition of
the acronyms), ii) some global parameters related to photo-
synthesis (i.e., EVmax, aq, aG,T; referred to section 2.2.1. for
the definition of these parameters). When using the Gaussian
distribution for the prior parameters, Vmax is found to be
more sensitive to both transport model and observing net-
work for the PFTs C4Gr, Crop, Wetl, DecCn, TmpDec. In
detail, Vmax for TmpDec, EvShr, and EvCn PFTs are more
sensitive to observing network, while Vmax for Tund and
DecCn PFTs are more sensitive to transport model (Table 1).
Overall, the use of a lognormal PDF on the prior parameters
tends to increase the shifts from the prior parameters,
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especially for the global parameters aq, fs, Q10s, tf, aG,T, and
Vmax for most of the PFTs (Table 1). In addition, the use of
lognormal PDFs on the prior parameters reduces the sensi-
tivity of the parameters to the observing network. Among the
optimized parameters, the choice of prior PDF has more
influence on the final parameter values than either network or
transport model (Table 1): the differences between optimized
parameters for the same PDF are smaller than the differences
obtained between the same model/data set up with different
PDFs. As an example, the difference in optimized Vmax for
the TmpDec PFT between TM2/41 and TM3/38 is about four
times the one between TM3/38 and TM3/38b (Table 1).
Thus, optimized parameters are more sensitive to the choice

of prior PDF for parameters than either network or transport
model.
[38] Some optimized parameters show values which are

not physically reasonable when optimizations are performed
with Gaussian PDFs for prior parameters. The striking
examples are the photosynthesis parameters Vmax for C4
grass and wetland vegetation, respectively, showing negative
optimized values regardless of the configuration (Table 1).
Such a Vmax gives a negative GPP for this PFT (see
equations (1) and (2)). For these Vmax, the use of lognormal
PDFs gives also a large reduction (Table 1). To a lesser
extent, there is the relatively small Vmax for crops in all the
optimizations. Indeed, such a small Vmax suggests low

Table 2. Mean Biosphere Fluxes (GtC/yr) Inferred From the BETHY Model Using Prior and Optimized Parameters Over the Time
Period 1980–1999a

Region Prior TM2/41 TM3/38 TM3/68 TM2/41b TM3/38b TM3/68b K09 B10

NEP
Global 0.5 2.08 2.14 2.19 2.07 2.13 2.13
NH �0.01 0.75 0.85 0.73 0.83 1.01 1.04
Tropics 0.5 1.48 1.27 1.45 2.46 1.54 1.37

GPP
Global 145 127 109 117 164 144 146 163 118
NH 38 36 27 27 45 36 36 46 34
Tropics 101 88 79 86 114 104 106 112 81

aGPP denotes Gross Primary Productivity and NEP, Net Ecosystem Productivity. Results from six optimized data configurations are shown: TM2/41
(TM2 model with observations from 41 Global View sites), TM3/38 (TM3 model with 38 sites used in TM2/41), and TM3/68 (TM3 model with 68
sites). TM2/41, TM3/38, and TM3/68 stand for optimizations by using Gaussian PDF on prior parameters, while TM2/41b, TM3/38b, and TM3/68b
stand for lognormal PDF. Estimates of GPP from Kattge et al. [2009] (K09) and Beer et al. [2010] (B10) are also given. Global, northern extra-tropical
[NH: 30�N–90�N], and tropical [30�S–30�N] fluxes are calculated for all these configurations.

Figure 2. Spatial distribution of mean gross primary productivity (GPP) inferred from 6 configurations of
data and for the period 1980–1999. (left) TM2/41 shows inferred fluxes obtained from optimization but
using TM2 data and 41 stations. (right) TM3/68 shows results from optimization when using TM3 model
and 68 sites. (middle) TM3/38 gives results when using TM3 model and 38 sites. TM2/41, TM3/38, and
TM3/68 are obtained from a Gaussian distribution on prior parameters, while TM2/41b, TM3/38b, and
TM3/68b stand for the lognormal distribution.
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productivity of crops contradicting in situ observations [e.g.,
Beerling and Quick, 1995].
[39] All the three optimizations when using Gaussian

PDFs for the prior parameters give values of fR,growth less
than 1 (Table 1). We see from equation (6) that a value of
fR,growth < 1 yields unrealistic negative growth respiration.
We note that even in this unrealistic case the sum of main-
tenance and growth respiration (the difference between NPP
and GPP) can still be reasonable even if the individual
components are not. When we impose a lognormal distribu-
tion on the parameter to bound its value above 1, results show
also a large reduction (close to 1; see Table 1).
[40] Finally, it is worth noting the large shifts of the

quantum efficiency aq (increase from its prior) and the slope
aG,T (reduced from its prior) (Table 1). Such a reduction of
aG,T decreases the value of the CO2 compensation point G*
(see section 2.2.1), which in turn can increase GPP for C3
plants (equations (1)–(3)). The impact of these changes in
GPP is discussed in more details in section 5.1.1.
[41] We found that the unrealistic negative values of Vmax

for C4-grass and swamp vegetation (Wetl) are mainly due
to the contribution of Antarctic and Southern Ocean stations,
far distant from the subtropical savannas described by the
parameter. This immediately casts doubt on the result. It is
almost certain, for example, that the large-scale transport
between the savannas and these stations contains correlated
errors so that the inclusion of many such stations with errors
assumed to be independent overestimates their contribution.
Both high frequency continuous observations and stations
placed nearby C4 grass regions would reduce this unrea-
sonable dependence.
[42] The uncertainties in the optimized parameters have

been computed by using the inverse of the Hessian (i.e., the
second derivative; see equation (11)) of the cost function
with respect to the parameter x, as performed by Rayner et al.
[2005] and Scholze et al. [2007]. The results are not shown
for brevity sake. Overall, for the majority of the parameters,
there is only a slight reduction of the prior uncertainty (up
to 5%). The largest reductions are obtained for the scaling

parameter b (equation (9)). As an example, the uncertainty in
b for the tropical evergreen forest (TrEv) which was initially
25% of its prior value, dropped to 12% for TM3/68.

5. Gross Primary Productivity GPP

5.1. Optimized GPP From CCDAS

5.1.1. GPP Patterns
[43] Table 2 shows a range of estimates of GPP for dif-

ferent regions and configurations. Most configurations show
a substantial increase in global GPP from the prior value,
dominated by increases in tropical forests (Figure 2). Overall,
about 92% of the pixels show GPP less than 3500 gC/m2/yr.
About 5% of the total pixels showGPP between 3500 gC/m2/
yr and 5000 gC/m2/yr and they are in the tropics. Very few
pixels (e.g., 3 for TM3/68b) show very large GPP (>6000 gC/
m2/yr) in the tropics. Such extreme GPP values are also
reported by Kattge et al. [2009] when using Vmax for tropical
forests similar to our optimizations. In this study, the large
GPP found in tropics are due to both optimized Vmax and the
global parameters relative to the energy activation aq (i.e.,
quantum efficiency) and the slope aG,T between the CO2

compensation point G* and the vegetation temperature (see
equations (1)–(3)). Thus, as obtained from the optimizations,
the combination of both the increase of aq and the decrease of
aG,T (see Table 1) leads to more primary productivity. Indeed,
the increase of aq and decrease of aG,T (hence the decrease of
the CO2 compensation point G*) increase both the electron
transport, JE, and the carboxylation enzyme Rubisco, JC,
limiting rates (equations (1)–(3)). Given this, only a strong
reduction of Vmax can significantly decrease the GPP. As an
example, in TM2/41, the strong reduction of prior Vmax for
crop (about 80%) decreases the prior GPP for this PFT only
to about half of its value (Tables 1 and 3).
[44] Our preferred configuration (TM3/68b) yields an

annual global GPP of 146 GtC/yr (Tables 2 and 3). The
configurations do show considerable variability even though
each of them is reasonably able to fit the station observations,
as shown by the similar values of the cost function obtained

Table 3. Gross Primary Productivity (GPP in GtC/yr) Obtained From Each of the 13 Plant Functional Types (PFT) Used in BETHY
Model Reported When Using the 6 Configurations of Optimized Parameters, as Described in Table 1a

PFT

GPP (GtC/yr)

Parametric
Uncertainty GPP

(GtC/yr)

Prior TM2/41 TM3/38 TM3/68 TM2/41b TM3/38b TM3/68b Prior TM3/68b

TrEv 36 53 49.2 53 59.2 53.6 56.1 3 2
TrDec 18.6 20.9 18 21.8 27.3 24.2 23.8 2.7 2
TmpEv 0.5 0.6 0,5 0,6 0.6 0.5 0.5 2.6 2.1
TmpDec 4 9.9 8.3 10.1 12.4 11 12.4 2.7 2.2
EvCn 8.3 9.7 6.5 3.7 11.5 8.1 6.5 3.2 1.8
DecCn 1.1 2.3 1.8 2 3.1 2.3 2.3 2.6 2.1
EvShr 4.7 8.6 8.2 7.6 11.6 10.6 11 2.6 2
DecShr 2.5 2.4 2 2.1 2.6 2.5 2.4 2.6 2.1
C3Gr 20.1 18 14.3 16.3 16.1 13 13.1 3.3 1.9
C4Gr 34.5 �2.3 �0.5 �2.3 6.5 7.2 6.5 3.1 2.3
Tund 2 2.3 0.6 1 2.7 0.8 0.9 2.7 2
Wetl 0.6 �4.5 �6.5 �4.3 0.5 0.4 0.4 2.6 2.1
Crop 12 6.1 6.3 5.2 10.1 9.3 9.5 2.7 2
all PFTs 145 127 109 117 164 144 146 4.7 2

aThe parametric uncertainties on GPP inferred from prior and optimized parameters by using TM3/68b data set are shown. TM2/41, TM3/38, and TM3/68
stand for optimizations by using Gaussian PDF on prior parameters, while TM2/41b, TM3/38b, and TM3/68b stand for lognormal PDF. See Figure 1 for a
description of the PFTs.

KOFFI ET AL.: BIOSPHERE FLUXES INFERRED FROM A CCDAS GB1024GB1024

8 of 15



from the 6 configurations (not shown). This suggests that the
current network is not well placed to observe GPP, in par-
ticular in the tropics. Some of the range of estimates can be
discounted since the unbounded parameter cases can produce
negative GPP for some PFTs (Table 3).
5.1.2. Uncertainty in GPP
[45] For optimizations obtained by using the same PDF

on the priors (i.e., Gaussian or lognormal), the differences
among the optimized GPPs are mainly due to the transport

model (Table 3 and Figure 2). As an example, the largest
difference of about 18 GtC/yr is between TM2/41 and
TM3/38, while similar GPP is derived from the TM3 con-
figurations (Table 3 and Figure 2). The largest differences
occur for C4 grass and swamp vegetation PFTs where rela-
tively large negative GPP are computed when using Gaussian
PDFs on prior parameters for optimizations (Table 3). Added
to this uncertainty stemming from the configuration, there
is also the so-called internal uncertainty due to the poor
constraint of some parameters. We calculate this parameter
uncertainty following Rayner et al. [2005] and propagate it to
uncertainties in global and regional GPP following Scholze
et al. [2007] (see equation (10)). Since the uncertainties on
posterior GPPs obtained from the 6 configurations are simi-
lar, only results from the TM3/68b set up along with the prior
uncertainties are reported in Table 3. The largest uncertain-
ties are found for tropical evergreen forest, evergreen conif-
erous forest, C3 grass, and crop vegetation types. These
uncertainties are significantly reduced after the optimization:
the prior uncertainties are reduced up to 57%. Quadratically
summing the uncertainties from different configurations (i.e.,
the standard deviation from the optimized GPPs reported
in Tables 2 and 3) and the parametric uncertainty (Table 3)
yields a total uncertainty in global GPP of about 19 GtC/yr.
5.1.3. Testing the Network With LMDz
[46] The sensitivity of the estimated GPP to the configu-

ration is striking given that all configurations fit the obser-
vations equally well. Indeed, as earlier mentioned we find
similar values of the cost functions from all the configura-
tions. This prompts the question whether the poor constraint
on GPP is a fundamental problem of atmospheric networks or
a property of the particular networks we have used. Recall
that atmospheric CO2 concentrations are directly sensitive to
NEP rather than component fluxes such as GPP. One can
assess the constraint available from the atmosphere by asking
whether atmospheric concentrations anywhere are sensitive
to the range of GPP estimates we calculate. We cannot test
this with TM2 or TM3 since we only have access to the
Jacobians at particular stations. We simulated surface CO2

concentrations using the global climate model LMDz-INCA

Figure 3. Root mean square difference deviation RMSD
(ppm) between CO2 concentration fields using NEP of TM3
with 68 sites and with Gaussian PDF on prior parameters
(i.e., TM3/68) in contrast to TM3 with 68 sites but with
lognormal PDF (i.e., TM3/68b). Simulations are performed
through the global transport model LMDz-INCA.

Figure 4. Comparison of mean annual GPP from the TM3/68b configuration (2� � 2� spatial resolution)
and the JSBACH-based estimate by Kattge et al. [2009] (K09; 3.75� � 3.75� spatial resolution) and to the
data-driven estimate by Beer et al. [2010] (B10; 0.5� � 0.5� spatial resolution).
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(see section 2.2.2 for further details on the model) using NEP
obtained from the cases TM3/68 and TM3/68b. We created
a monthly mean climatology of the NEP fields for the two
configurations. We ran LMDZ for 6 years using these two
cases as inputs then discarded the first three years as spin-up.
The simulated mixing ratios at the surface were analyzed.
The differences between the two simulations were quantified
by the root mean square difference computed both in space
and time. Results first confirm the CCDAS simulation in the
sense that only small differences are found at stations of the
studied networks (Figure 3). There are, however, large dif-
ferences elsewhere such as Central Asia, South America,
Hudson’s Bay in Canada, and part of Africa. This suggests
that the observation of productivity is possible using an
atmospheric network but requires quite different placement
of stations.

[47] While it would be possible to design an observational
network specifically for GPP this is likely to be dependent on
details of modeled transport. The results do reinforce the
utility of the spatially dense measurements of CO2 provided
by satellites.

5.2. Comparison of Our Inferred GPP to Previous
Findings

[48] Kattge et al. [2009], using leaf level nitrogen content
and photosynthesis measurements, optimized the parameters
of the photosynthesis model of Farquhar et al. [1980] (see
equations (1)–(6) in this study for details). In a Bayesian
inversion approach using a Markov Chain Monte Carlo
sampling technique, they optimized the parameters relevant
for the GPP computation. Their optimization substantially
reduced the productivity of tropical trees and moderately
increased the productivities for temperate trees compared to
their prior estimate. GPP estimates of their model (JSBACH)
were validated against a data sets of forest biome ecosystem
measurement sites [Luyssaert et al., 2007]. They produced
a global estimate for the period 1980–1999, which was
163 GtC/yr. The study of Kattge et al. [2009] is called
hereafter K09.
[49] Beer et al. [2010] estimated mean terrestrial GPP for

the period 1998–2005 on the basis of NEP measurements by
the eddy covariance technique at flux towers and large-scale
explanatory variables from remote sensing and climate
re-analyses. Flux tower NEP was partitioned into GPP and
ecosystem respiration based on both nighttime and day-time
NEP data. Such derived GPP was further scaled from flux
tower sites to the globe by using several schemes including
machine learning algorithms or regressions to the intercepted
light or transpired water. For doing so, explanatory variables
at large scales such as land cover, fraction of absorbed pho-
tosynthetically active radiation, leaf area index, short-wave
radiation, vapor pressure deficit, air temperature, precipita-
tion, and runoff were used. The median map used here for
comparison was calculated from the full GPP distribution

Table 4. Comparison of GPP Obtained From the Optimization From TM3/68b to Results of Beer et al. [2010] (B10)a

BETHY Map: TM3/68b

B10 Biome Map

Biome Types

TM3/68b B10

PFTs
Area

(1012 m2)

Mean GPP
per Area
(gC/m2/yr)

Area
(1012 m2)

Mean GPP
per Area
(gC/m2/yr)

Area
(1012 m2)

Median GPP
per Area
(gC/m2/yr)

TrEv+TrDec 19.4 4127.2 tropical forests 18.1 3447.9 20.3 2332.9
TmpEv+TmpDec 4.0 3288.4 temperate forests 12.3 1094.6 13.6 954.4
EvCn+DecCn 11.0 800.3 boreal forests 14.3 605.6 14.6 604.6
C4 grass 25.5 254.3 tropical savannahs and grasslands 18.8 1249.6 18.8 1134.9
C3 grass+DecShr 24.6 632.1 temperate grasslands and shrublands 10.3 496.4 11.2 478.2
EvShr 19.3 569.8 deserts 22.7 379.6 17.4 231.5
Tundra 7.6 118.4 tundra 5.0 227.8 7.6 292.9
Crop 9.7 977.3 croplands 14.8 1057.7 15.8 1094.6
Welt 1.2 346.7 wetlands 0.9 1056.7 0.9 1051.2
- - - not classified 5.1 1191.9 - -
Total/mean 122.3 1190.0 total/mean 122.3 1190.0 120.4 999.6

aTM3/68b stands for GPP obtained from optimized BETHY by using TM3 model and 68 CO2 concentration observational sites and by using a lognormal
PDF on prior parameters. Two methods are used for the comparison: i) BETHYmap: correspondence of BETHY PFTs to B10 biome types and ii) B10 biome
map: GPP derived from TM3/68b mapped onto B10 biome types. The mean GPP at global scale is given by [mean GPP per area] * [Area of the biome] /
[Total area]. When using the method ii), some pixels of BETHY were not associated to any of the biome types. The corresponding GPP from TM3/68b are
reported as “Not classified.” The definition of the BETHY PFTs acronym can be found in Figure 1.

Figure 5. Latitudinal distribution of the mean gross
primary productivity (GPP) within a 5� latitudinal band.
TM3/68b stands for GPP obtained from optimized BETHY
by using TM3 model and 68 CO2 concentration observa-
tional sites by using a lognormal PDF on prior parameters.
B10 corresponds to GPP obtained from Beer et al. [2010]
and K09, those estimated from Kattge et al. [2009]. LY07
stands for GPP for tropical forests reported by Luyssaert
et al. [2007].
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representing uncertainties due to flux partitioning, model
parameters, explanatory variables, model structure and scal-
ing approach. The overall terrestrial GPP was estimated at
123 GtC/yr with a median absolute deviation of 8 GtC/yr
and a 95% confidence interval between 102 and 135 GtC/yr
[Beer et al., 2010, hereinafter B10].
[50] We compare global and regionally aggregated esti-

mates from the case TM3/68b to K09 and B10 estimates.
Since the approach in this study shares a common photo-
synthesis model with K09, we focus on the more independent
estimates from B10.
[51] Figure 4 presents the maps of the mean GPP for

TM3/68b, K09, and B10. Regional aggregates are displayed
in Table 2 together with their latitudinal distributions in
Figure 5. TM3/68b shows similar spatial patterns with B10
in the extra-tropics, while it exhibits large differences with
both B10 and K09 in the Tropics (Figures 4 and 5). Our GPP
estimates in the tropics are greater than all the previous
findings. Our results are similar to the GPP reported by
Luyssaert et al. [2007] (Figure 5). The study of Luyssaert
et al. [2007] probably overestimates regional GPP since
it used a few productive sites. The differences between
TM3/68b and K09 arise from the low Vmax for C3 grass,
crop, and C4 grass (C3 herbaceous in K09) PFTs and the
high Vmax of both tropical evergreen forest and temperate
deciduous forest PFTs obtained from the TM3/68b optimi-
zation (Table 1). In detail, Vmax from TM3/68b for both the
tropical forests (63.8 mmol m�2 s�1) and crop (47.9 mmol
m�2 s�1) are about twice their corresponding values reported
in K09. For temperate deciduous forests, Vmax of 149.2 mmol
m�2 s�1 is obtained from TM3/68b, while it is only 29 mmol
m�2 s�1 in K09. As already discussed in section 4, TM3/68b
gives a very low Vmax for C4 grass (0.7 mmol m�2 s�1)
compared to 78.2 mmol m�2 s�1 used in K09. Moreover, the

global parameters controlling energy activation such as aq

and aG,T contribute to the differences in GPPs between K09
and TM3/68b (see section 5.1.1 for details).
[52] Surprisingly, all four analyzed cases show good

agreement on the partitioning of GPP between the Northern
Hemisphere and Tropics with a ratio around 0.40 (Table 2).
[53] We have computed mean GPP per unit area for 9

biome types as in B10. Thus, for a given B10 biome type,
all the pixels of BETHY that fall in the pixels of this biome
are considered. We obtain differences in the two maps for
which we lose 4.2% of the total GPP from BETHY. In fact,
the two vegetation maps can be different at some grid points.
As an example, TM3/68b can describe grassland for a given
grid point in its vegetation map, while B10 considers it as
forest in its map. Thus, we have also made a correspondence
(i.e., grouping all the PFTs that better represent a given
biome type) between BETHY PFTs and B10 biome types
and compute means and totals for GPP derived from BETHY.
The main driver of GPP at a point is the vegetation type rather
than climate, as performed when mapping BETHY PFTs on
B10 biome map. These two GPP characterizations give both
the lower and upper limits of GPP derived from BETHY for
a given biome type.
[54] For a given biome type, the mean GPP per unit area is

then computed as the total GPP for this biome divided by the
area covered by the biome (PFT or group of PFTs) (Table 4).
Again we use TM3/68b. Overall, a good agreement is found
between TM3/68b and B10 estimates. Except for tropical and
temperate forests, and savannah and grasslands, the differ-
ences between TM3/68b and B10 total GPP can be explained
by the differences in their respective biome areas (Table 4).
For the tropical forest biome, our mean GPP per unit area
is at most 1.8 times higher than B10 estimates. As already
discussed in section 5.1, this result is mainly explained by

Figure 6. As in Figure 2, but for the net ecosystem productivity NEP. Positive values stand for uptake of
CO2 by the terrestrial biosphere.

KOFFI ET AL.: BIOSPHERE FLUXES INFERRED FROM A CCDAS GB1024GB1024

11 of 15



the high productivity of the tropical forest PFTs in BETHY.
The same reason can be evoked for temperate forests for
which the dominant PFT in BETHY (temperate deciduous)
also shows high productivity (Tables 1 and 4).

6. Sensitivity to Configuration

[55] Previous studies have found considerable sensitivity
of inverse flux estimates to the set-up [Gurney et al., 2002;
Law et al., 2003; Gurney et al., 2003]. Important details
include the transport model, the observing network, the prior
and the discretization of the source regions. A CCDAS needs
to make many of the same choices, to which we can add the
choice of biosphere model. Here we explore some of these
sensitivities, both for the net flux and the GPP estimates
made earlier.
[56] Although we do not have two biosphere models, the

choice of the prior probability distribution is, in one sense, a
change to the model. As noted earlier (see section 2.2.6), the
exponential transform carried out on most parameters in the
“b” cases is effectively a change in the function mapping
parameters to observations, i.e., the model.
[57] Figure 6 (summarized in Table 2) shows NEP derived

by using the six configurations of optimized parameters.
Similar NEP distributions are obtained for TM3/38 and TM3/
68, which are quite different from TM2/41 results. For a
given configuration, large differences also occur between
optimizations using Gaussian PDFs and lognormal PDFs
(Figure 6 and Table 2). We quantify the differences in NEP
between two configurations by calculating the root mean
square difference (rmsd) over all grid cells of BETHY and all
months in the study period 1980–1999. The results show that
NEP is more sensitive to the choice of PDF on the form of the
prior parameters, but it also significantly sensitive to the
choice of transport model. The rmsd between TM3/68 and
TM3/68b (sensitivity to PDF) is 143 gC/m2/yr, while 111 gC/
m2/yr is obtained between TM2/41 and TM3/38 (sensitivity
to transport model). The rmsd between TM3/38 and TM3/68
(sensitivity to observing network) is 42 gC/m2/yr. The use of
a lognormal PDF on prior parameters reduced the sensitivity
of NEP to both transport model and network. The rmsd
between TM2/41b and TM3/38b is 80 gC/m2/yr, while a
small rmsd (16 gC/m2/yr) is obtained between TM3/38b and
TM3/68b. All the six optimizations give the largest uptake
over the Tropics (Table 2). In general, the large-scale patterns
of NEP produced with CCDAS do not mirror those of direct
inversions using the same models. Gurney et al. [2002]
estimated a northern extra-tropical terrestrial flux to the
atmosphere of �0.74 GtC/yr for TM2 and �3.15 GtC/yr
for TM3. For the tropics these fluxes were �0.18 GtC/yr
for TM2 and +1.40 GtC/yr for TM3. These figures cannot
be compared directly with CCDAS because of different
region boundaries and treatments of land-use change, but we
can note the differences in the partitioning of NEP between
the Northern Hemisphere and Tropics.
[58] In summary we see that the patterns of NEP within

CCDAS are equally sensitive to the choice of PDF on prior
parameters and the choice of transport model. This transport
model sensitivity is not greatly reduced compared to direct
inversions.
[59] The case for GPP is rather different. As one might

expect, the terrestrial model BETHY intervenes more strongly

in the transfer of information from atmospheric measure-
ments to indirectly observed quantities like GPP than it does
for the NEP. Thus there are large differences in all cases
between the Gaussian and lognormal prior PDFs (Tables 2
and 3). The differences between the optimized GPPs were
quantified by the root mean square difference (rmsd) com-
puted both in space and time. Results show that the largest
differences are driven by the PDF on the prior parameters.
A rmsd of 242 gC/m2/yr is found between TM3/68 and
TM3/68b. Differences between TM2/41 and TM3/38 (sen-
sitivity to transport model) give a rmsd of 130 gC/m2/yr
which is similar to 126 gC/m2/yr obtained between TM3/38
and TM68 (sensitivity to observing network). Again, the
use of a lognormal PDF on prior parameters reduced the
sensitivity of GPP to both transport model and observing
network, but with a larger reduction to the network: a rmsd
of 104 gC/m2/yr is now found between TM2/41b and TM3/
38b, while a small rmsd (33 gC/m2/yr) is found between
TM3/38b and TM3/68b.

7. Discussions

[60] One of the two goals of this study was to understand
the interplay between the dynamical constraint offered by
BETHY and the observational constraint from the atmo-
sphere. We see that as we change observational network,
transport model or the form of the prior probability distri-
bution it is this last which has the biggest impact. We should
emphasize that this is not a question of the choice of prior
values for parameters since these are the same in all cases.
Rather the prior probability distribution affects the mapping
between parameters within the optimization and the obser-
vables. In one important sense this is a vindication for the use
of methods like data assimilation for carbon-cycle studies.
Had the observational constraint produced results that did not
depend on the underlying model we would avoid the extra
effort and assumptions of data assimilation and choose a
direct inversion. The relative dominance of the dynamical
constraint is more a measure of the weakness of the obser-
vational constraint than of the inherent power of the
dynamics. This is shown by the similarity of the fit to the
observations generated by quite different simulations (e.g.,
different GPP). It is worth noting that NEP is also signifi-
cantly sensitive to transport model and this is not greatly
reduced compared to direct inversion.
[61] The results provide an important context for previous

CCDAS studies like Rayner et al. [2005] and Scholze et al.
[2007]. In particular these previous studies produce impres-
sively small uncertainties for calculated quantities such as net
fluxes or concentrations. These studies acknowledge that this
is a result of the small number of unknown parameters (57 for
this study) and the consequent over-determination of the
problem. The sensitivity of our results to the prior probability
distributions suggests that these parametric uncertainties do
not capture the overall uncertainty of the system. While the
projection of parametric uncertainty onto calculated quanti-
ties remains useful it is now clear that other, less precise but
more complete methods will also be necessary to characterize
the total uncertainty.
[62] It is worth mentioning that uncertainties in our

inferred GPPs may depend on uncertainties on the
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background fluxes used to compute CO2 concentrations as
well as uncertainties on the parameters related to e.g.,
fAPAR.
[63] Part of the motivation for this study was to extend the

diagnostic application of CCDAS beyond NEP. The domi-
nance of the dynamical constraint also holds for GPP. Quite
large changes in GPP do not project onto significant changes
in concentration. Our mapping of the concentrations arising
from the two different prior PDFs suggests the problem is not
inherent in the use of concentration data but a result of a
particular network. This is good news but poses its own
problem since a network optimal for constraining one quan-
tity is little use for another. Indeed, NEP is clearly related to
the atmospheric CO2 concentration, while GPP depend on its
interaction with the plant during the photosynthesis process
and hence to the characteristics of this plant. We suggest that
a station relevant for GPP may capture much of the singu-
larities of each type of vegetation, while for NEP this can be
less important. Consequently, for the GPP, one needs to place
stations close or within each of the regions that characterize
the main vegetation type. This supports the use of measure-
ment approaches with good spatial coverage such as the
current and future measurements of CO2 from space [Crisp
et al., 2004; Hamazaki et al., 2004]. Of course this does not
reduce the value of measurements elsewhere in the chain of
processes linking photosynthesis to NEP.
[64] This study has only considered one of the potential

observational constraints on GPP. The methodology we have
used is capable of treating the same data as used by Kattge
et al. [2009] and Beer et al. [2010]. It remains an important
question whether the joint observational constraint of these
data sets used together will further refine our estimates, i.e.,
are they mutually consistent with the dynamics imposed by
BETHY.
[65] Our results have clearly shown that parameters rele-

vant for GPP are poorly constrained in some sensitive areas
due to the coarse observing network of CO2 concentration
measurements we are using. Therefore, the immediate effort
to be invested to improve the current CCDAS should be on
the characterization of the observations relevant to assimilate
the parameters of BETHY. We recommend the use of i) the
new prior parameters relevant to GPP [Kattge et al., 2009],
ii) the fluorescence data from the GOSAT satellite [e.g.,
Frankenberg et al., 2011], iii) the high frequency and con-
tinuous CO2 concentrations from the current network, and iv)
the leaf level observations [Ziehn et al., 2011] to constrain
these process parameters.

8. Conclusions

[66] We have studied the sensitivity of estimates using a
carbon-cycle data assimilation system to choices of atmo-
spheric concentration network, transport model and the
choice of prior probability distributions of parameters. We
have extended this sensitivity analysis to GPP as well as NEP
or net flux. Our conclusions can be summarized as follows:
[67] 1) Estimates of NEP and GPP are more sensitive to the

choice of prior PDF for the parameters than the choices of
transport model and observing network, however, we must
note that our alternative choice of prior PDF was motivated
by restricting some of the control parameters to their physi-
cally meaningful domains. It is worth noting that NEP is also

significantly sensitive to transport model and this is not
greatly reduced compared to direct inversion.
[68] 2) Our best-case estimate of GPP is 146 � 19 GtC/yr

globally. This cannot be distinguished by the current atmo-
spheric network from the lower estimate of 117 � 19 GtC/yr
from the alternative choice of PDF. Our GPP estimates span a
wide range, especially in the Tropics where our approach
gives higher values for all the configurations than most other
approaches.
[69] 3) The atmospheric constraint of GPP could be

improved by additional CO2 observations in Asia, parts of
America, and African rain forest as well as in C4 grass
regions.

Notation

[70] The following notation is relevant to the BETHY
model description (section 2.2.1).

GPP gross primary productivity (mmol m�2 s�1)
JC minimum rate of electron transport limited by the

carboxylation enzyme Rubisco (mmol m�2 s�1).
JE minimum rate of electron transport (mmol m�2 s�1).
Jc gross photosynthetic product for CO2 limited

capacity (mmol m�2 s�1).
Je gross photosynthetic rate limited by the photosyn-

thetic enzyme Rubisco (mmol m�2 s�1).
Ji gross photosynthetic rate limited by the amount of

available light (mmol m�2 s�1).
Vmax maximum rate of Rubisco carboxylation (mmol m�2

s�1).
Ci intercellular CO2 concentration (mmol mol�1).
G* CO2 compensation point in the absence of dark

respiration (mmol mol�1).
Kc Michaelis-Menten constant for CO2 (mmol mol�1).
KO Michaelis-Menten constant for O2 (mmol mol�1).
Ox partial pressure of oxygen (hPa).
aq the quantum efficiency (electrons s�1 / photons s�1).
ai the integrated C4 quantum efficiency (electrons s�1

/ photons s�1).
I photosynthetically active radiation (PAR) absorption
rate (mmol m�2 s�1).

Jmax maximum rate of electron transport (mmol m�2 s�1).
k PEP case (the initial CO2 fixating enzyme in C4)
CO2 specificity (mol m�2 s�1).

aJ,V the slope between k and Vmax (dimensionless).
aG,T the slope between G* and the vegetation tempera-

ture (mmol mol�1 �C�1).
E activation energy (J mol�1).

NPP net primary productivity (mmol m�2 s�1).
RM maintenance respiration of the plant (mmol m�2

s�1).
RG growth respiration of the plant (mmol m�2 s�1).
Rd dark (mitochondrial) respiration (mmol m�2 s�1).

fR,leaf the fraction of the maintenance respiration due to
the leaf (dimensionless).

fR,growth the amount of carbon respired for a unit gain in
vegetation biomass (dimensionless).

NEP net ecosystem productivity (mmol m�2 s�1).
RS heterotrophic respiration (mmol m�2 s�1).
RS,f heterotrophic respiration due to litter pool respira-

tion (mmol m�2 s�1).
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RS,s heterotrophic respiration due to slow carbon respi-
ration carbon pool (mmol m�2 s�1).

fs fraction of decomposition from the litter pool that
goes to slow pool (dimensionless).

Cf size of the litter pool (mmol m�2 �C�1).
Cs size of the slow litter pool (mmol m�2 �C�1).
w soil moisture (dimensionless).
Ta air temperature (�C).
k soil moisture dependence parameter (dimensionless).

Q10f temperature dependence parameter relative for litter
pool (dimensionless).

Q10s temperature dependence parameter relative for slow
pool (dimensionless).

tf the litter pool turnover time at 25�C (s).
ts the slow pool turnover time at 25�C (s).
b scaling factor (dimensionless).
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