

Local-scale carbon cycle data assimilation using satellitederived FAPAR with a generic phenology model

Wolfgang Knorr (1), Thomas Kaminski (2), Marko Scholze (1), Nadine Gobron (3), Bernard Pinty (3), Ralf Giering (2) and Pierre-Philippe Mathieu (4)

(1) Department of Earth Sciences, University of Bristol; (2) FastOpt GmbH, Hamburg; (3) Institute for Environment and Sustainability, Joint Research Centre, Ispra; (4) European Space Agency, Frascati

Prescribed
Climata

- Demonstrate the assimilation of optical \bullet reflectance data from satellites into a new generic model of leaf phenology (Fig. 1)
- Assess the reduction in uncertainty of carbon fluxes after simultaneous assimilation of satellite-data at multiple sites
- Explore suitability for global-scale applications

Figure 1: Revised CCDAS scheme.

Table 1: The 14 parameters for the new phenology scheme as optimised in CCDAS. An additional 24 Parameters were optimised from the original CCDAS, with uncertainty reductions of up to 7%.

•	Efficient algorithm finds optimum for
	all 6 sites simultaneously after ~60
	iterations, producing good fit to
	observed FAPAR (Fig. 1)

• For 6 sites, FAPAR data constrain most phenology parameters (Table 1).

Parameter	PFTs ¹	Prior value	Posterior value	Uncert. reduction [%]	
~Λ maximum LAI	all	5.00±0.25	4.36±0.23	6	
T_{φ} temperature threshold	4, 5	10.00 ± 0.50	9.34±0.27	46	
T_{φ} "	8	6.00 ± 0.50	8.11±0.50	0	
T_{φ} "	9,10	2.00 ± 0.50	1.53 ± 0.41	18	
T_r spatial variability of T_{ω}	1, 2, 4, 5, 8	2.00 ± 0.10	2.04 ± 0.10	1	
T_r "	9,10	0.50 ± 0.10	0.52 ± 0.10	0	
t_c day length threshold	4, 5, 8	10.50 ± 0.50	13.73±0.43	14	
t_r spatial variability of t_c	4, 5, 8	0.50 ± 0.10	0.46 ± 0.10	0	
ξ see Equ. (1)	all	0.50 ± 0.10	0.52 ± 0.10	0	
$k_L = 1/\tau_L$ see Equ. (1)	all exc. 5	0.100 ± 0.050	0.058 ± 0.012	76	
$k_I = 1/\tau_I$ see Equ. (1)	5	$3.0\pm1.5\times10^{-3}$	$3.3\pm8.9\times10^{-4}$	40	

- Extend the Carbon Cycle Data Assimilation System (CCDAS)¹ to include hydrology and leaf phenology
- Incorporate satellite data of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) from ESA's MERIS² instrument for 6 sites.
- Optimise process parameters of global vegetation model BETHY³ for best agreement of model and satellite FAPAR.
- Use local information at the optimum to infer *a posteriori* uncertainties of parameters and compare to *a priori* uncertainties.
- Project *a priori* and *a posteriori* uncertainties from parameters to carbon fluxes.

Results

- Limited constraint for parameters related to photosynthesis ($\leq 7\%$).
- Only small constraint on carbon fluxes (Fig. 3).

Outlook

- Algorithm fast enough for global applications.
- Since one set of parameters is used across multiple sites, adding more grid cells will increase constraint on parameters from satellite data.
- Expect significant constraint on carbon fluxes if model is applied

t _W water-limited leaf longevity	1	360 ± 180	1114 ± 192	
τ _W ''	2	50±25	112±19	
τ _W ''	9, 10	50±25	28±12	

¹1: tropical evergreen trees, 2: tropical drought-deciduous trees; 4: temperate cold-deciduous trees; 5: evergreen conifers; 8: deciduous understorey shrub; 9: C3 grass; 10: C4 grass. The PFTs exist at the following sites: Sodankylä (5, 4), Zotino (5, 4), Loobos (5, 8, 9), Hainich (4, 9), Manaus (1, 10) and Maun, Botswana (2, 10).

Leaf area index (LAI): Λ

- Leaf sprouting rate: ξ \bullet
- Leaf shedding time: $\tau_{\rm L}$
- Water-limited LAI: Λ_{max} \bullet
- Fraction of plants in growth phase: f

globally.

References

1-Rayner, P. J., M. Scholze, W. Knorr, T. Kaminski, R. Giering and H. Widmann (2005), Two decades of terrestrial carbon fluxes from a Carbon Cycle Data Assimilation System (CCDAS), Global Biogeochemical Cycles, 19, doi:10.1029/2004GB002254.

2-Gobron, N., et al. (2008), Uncertainty estimates for the FAPAR operational products derived from MERIS -Impact of top-of-atmosphere radiance uncertainties and validation with field data, *Remote Sens. Eviron.*, 112, 1871-1883.

3-Knorr, W. (2000), Annual and interannual CO₂ exchanges of the terrestrial biosphere: process-based simulations and uncertainties, Global Ecology and Biogeography, 9, 225-252.

Figure 3: *a priori* (black) and *a posteriori* (red) NPP simulated with BETHY, with error bars.

Figure 2: *a priori* (dotted) and *a posteriori* (solid) FAPAR simulated with BETHY at the 6 sites. Satellite data are shown with error bars.

