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Abstract

A seasonal cycle of fossil fuel CO2 emissions replaces an intra-annually invariant background flux in

the global carbon cycle model CCDAS (Carbon Cycle Data Assimilation System). CO2 emissions are

divided into five regions. The fossil fuel seasonality function is a basic sinusoidal cycle with terms varying

latitudinally and monthly. A tuneable parameter representing the amplitude and phase of the cycle in

each region is calibrated through data assimilation of atmospheric CO2 concentrations at 41 observation

stations.

There is an overall improvement in fit to observational data — a reduced χ-squared of 1.73 (relative

to 2.23 with the background fossil fuel emissions). Geographically, most improvement is shown in the

Southern Hemisphere, where previously fit to data was most poor.

The realism of the predicted seasonal cycles for the five geographical regions, however, is low. For

the worst result (North and Central America), the amplitude of seasonality is near 100 × that sug-

gested in some studies, and peaks during the summer months as opposed to winter. Prediction that the

anthropogenic CO2 emissions for three of the five regions near zero in winter months is equally unrealistic.

Better estimates for the seasonality parameters are necessary due to the sensitivity of the calibration

process to their initial values. Research currently under way will hopefully produce better estimates for

some of the highest emitting countries, which may be sufficient to better constrain the calibration. Un-

certainty regarding the parameters associated with seasonality in emissions are high. It is recommended

that limits be imposed on the tuneable parameters so that the predicted seasonality is not compensating

for large changes in other seasonal fluxes that occur during calibration.

Furthermore, the seasonality function is deemed over-simplistic. Suggestions are made relating to a

superposition of a number of sinusoidal terms which should introduce more flexibility into the calibration

— allowing for more variation in cycle within a region, and increasing the realism of the emissions in

accordance with other studies.



1 Introduction

In 1896, the Nobel Prize-winning chemist Svanté Arrhenious proposed that the burning of fossil fuels, and

the resulting release of carbon dioxide into the atmosphere, was causing a change in the transparency in

the atmosphere to radiation, relating to J. B. Fourier’s greenhouse theory introduced at the beginning of

the 18th century [27]. He further proposed that said change may result in warming outside previous human

experience [27].

Arrhenious’ nonchalant comment took just short of a century to reach our (and politicians’) ears. Now

his concept has been developed into a theory widely ascribed to, attributing temperature change within the

Earth system to the radiative forcing of certain greenhouse gases (GHGs) [23].

It is estimated that a net anthropogenic change in radiative forcing of +1.6Wm−2 (+0.6 to +2.4) has

occurred over the last century [24, 23], leading to a temperature change of between 0.3 - 0.6◦C [27].

The most recent IPCC assessment report (published in 2007), states in its synthesis that ”Most of the

observed increase in global average temperatures since the mid 20th Century is very likely due to the observed

increase in anthropogenic GHG [greenhouse gas] concentrations.” Global GHG emissions have risen by 70%

between 1970 and 2004; CO2, has increased by 80% within that time period [23].

CO2 is the second most abundant GHG (to water vapour). It currently contributes to over 50% of the

net anthropogenic change in positive radiative forcing [23]. It is also a long-lifetime GHG — much of the

CO2 from fossil fuel emissions will remain in the atmosphere for a significant period of time. According to

Archer (2005), 17-33% of CO2 emitted now will dominate climate effects over the next 1,000 years, and up

to 7% will still be in the atmosphere 100,000 years from now [3].

Therefore, it is cumulative, not annual emissions which determine the ultimate equilibrium atmospheric

concentration. The IPCC and the Kyoto protocol both cite future CO2 emissions projections with reference

to stabilisation scenarios which attempt to quantify emissions cuts necessary for atmospheric concentrations

to arrive at various levels.

Increasing emissions and hence increasing atmospheric CO2 concentrations have been earmarked with the

potential to cause a change in climate extraneous to normal variations. Concerns regarding these digressions

are highly policy relevant. Gurney (2007) states ”our quantitative knowledge about these [CO2] emissions is

insufficient to satisfy current scientific and policy needs” [17]. It is necessary to have the scientific knowledge

to back up policy decisions so that future protocol may be increasingly effective.

Further research is necessary to ratify gaps in knowledge regarding the global carbon cycle — how

emissions are effecting it currently, and how they may effect it in the future. Effective mitigation requires
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process-based and quantitate data to back up policy decisions. Quantification and comprehension of the

oceanic and terrestrial CO2 sinks is one of the most important and policy-relevant areas of scientific research

at this time [45]. Quantification of anthropogenic CO2 emissions are tantamount to understanding the

future evolution of the global carbon cycle, and the determinants of such emissions necessary for verification

of policy adherence.

2 Background

2.1 The Global Carbon Cycle

Figure 1: Global Carbon Cycle showing net carbon fluxes (values accompanying arrows in GtCyr−1 and carbon
reservoirs (boxed values in GtC). Values are in accordance with those in IPCC AR4 and represent current best
estimates. [40]

Previous to industrialisation (circa 1750), atmospheric CO2 concentrations had remained between∼180ppm

(glacial) ∼300ppm (inter-glacial) for 650kyr (six glacial-interglacial cycles) [22]. In the more recent past (the

10kyr previous to 1750), the global atmospheric concentration fluctuated only within a ∼260 and 280ppm

range [22]. The stability of the level of CO2 in the atmosphere is governed by the global carbon cycle — a

complex interplay of transference and recycling of carbon between three main components - the atmosphere,
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the ocean and the terrestrial biosphere [58]. Fig. 1 succinctly depicts the main processes of transference

which work on a variety of time scales.

The status quo in atmospheric CO2 concentrations was broken by the advent of the industrial era. Fossil

fuel combustion, deforestation, cement production, land use-change and biomass burning all contributed to a

much larger net source of CO2, and consequently, atmospheric concentrations rose. Today, the concentration

sits at 379ppm — almost 100ppm higher than seen previously in the geological record [23]. The burning of

fossil fuels is the largest contributor to elevated CO2 levels [27, 22, 3].

Even under elevated atmospheric concentrations, however, the ocean and terrestrial biosphere still serve

to remove almost 60% of the carbon released into the atmosphere [52]. The mechanisms driving the terrestrial

and oceanic sinks, and their evolution into the future are currently poorly understood, with large uncertainties

relating to the many of the processes involved [23, 22].

2.2 Carbon Cycle Modelling

Traditionally, process-based modelling (bottom-up) and inverse modelling (top-down) techniques have been

applied independently to probe questions relating to Earth systems and the two communities have worked

independently [46]. A typical global carbon cycle model may be described by a set of equations including

a number of parameters (and uncertainties belonging to these parameters); in the case of inverse modelling

— tuneable parameters, whose values are known only to within a certain degree of accuracy. Inverse models

aim at reducing uncertainty associated with these parameters. Calibration of these parameters is usually

guided by intuition rather than mathematical computation [28].

For the bottom-up approach, validity of the model is determined by a post-run comparison of results with

observations, or a cross-model comparison [59]. The latter is commonly used to infer information relating to

the accuracy of the model, and the calculation of errors associated with it [4].

Until recently, combining the methods has resulted in model construction and run-times far in excess

of the immediate necessity (and often policy-relevancy) of the results themselves [28]. Data assimilation

without the use of adjoint or tangent linear inverse models is usually highly inefficient and/or inaccurate.

More recently, computational and technical advances, in specific the development of FastOpt’s AD tool

’Transformation of Algorithms in FORTRAN’ (TAF), has enabled much cheaper and more efficient data

assimilation techniques [28].
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2.3 CCDAS

CCDAS (Carbon Cycle Data Assimilation System) combines the inverse approach with a CO2 transport

model and a process-based model. The use of TAF allows for a model of this complexity to run efficiently.

Within the main mandate of quantifying and understanding underlying processes of the global carbon cycle,

one objective is to quantify terrestrial (or Kyoto) sinks, and to make suggestions regarding how it is possible

to optimise these sinks with a view to reducing emissions.

Offset Parameter (1)

BETHY Parameters (57)

BETHY

TM2
Background

Fluxes

Terrestrial
Fluxes

Observational
Data

Atmospheric
Concentrations

Cost Function Evaluation (J)

Figure 2: CCDAS set up for calibration. Lightly shaded boxes indicate tuneable parameters (57 associated with
the terrestrial biosphere model, BETHY; 1 offset parameter for base atmospheric concentration); dark shaded boxes
indicate CO2 fluxes and atmospheric concentrations. White boxes indicate mapping between quantities, and the
downward arrow indicates overall model flow. The final calculation of J directs the next iteration in the calibration
(changes the parameters towards a better fit to observations). Once a minimum inJ is found, calibration is stopped.
The background fluxes consist of fossil fuel emissions, CO2 flux due to land use change and oceanic carbon transference.
All parameters are listed in Table 1

It consists of biosphere model (BETHY) and an atmospheric transport model (TM2), together with

prescribed background CO2 fluxes representing ocean flux, land use change and fossil fuel emissions (as in

Rayner (2005) [48]; oceanic flux has magnitude and distribution from Takahashi et al. (1999) and inter-

annual variability from Le Quéré (2003); flux from land use change is from Houghton (2003) [56, 34, 21])

.

Within the model are a number of free parameters, which are tuned via data assimilation in the calibration

mode of the model, using TAF [30, 28]. Fig. 2 depicts the model flow in calibration mode. Uncertainties for

the parameters are calculated combining observational, model and data uncertainties. Initial values of the

4



parameters are based on current scientific knowledge, and the calibration seeks optimised values, attempting

to minimise the margin of the associated uncertainty. The model may also be run in a forward (or prognostic)

mode, using calibrated parameters to predict additional qualities of the system [28]. This mode is not used

within this study and hence is not detailed here, however forecasting is kept in mind when making decisions

relating to modelling preferences. The following subsections describe briefly the two main constituents of

CCDAS (the carbon cycle model, and the surrounding data assimilation system), with a final focus on the

anthropogenic CO2 emissions and their current role within the system.

2.3.1 BETHY and TM2

The ”Biosphere-Energy-Transportation-Hydrology” model (BETHY), the core of CCDAS, is a process-based

model of the terrestrial biosphere [52, 33]. It works on a 2◦ × 2◦ grid, and classifies vegetation into 13 plant

functional types (PFTs) [28]. Each grid cell may be allocated up to 3 different PFTs; the relative amount

of each specified by a fractional weighting [52]. At each grid cell, carbon assimilation via photosynthesis

is calculated, dependent simultaneously on a balance of light, heat, soil water and nitrogen [33]. The

respiration from both soil and plant are calculated via energy and water balance, and a phenology scheme

[52]. It simulates the diurnal cycle of CO2 assimilation and respiration, resolved at an hourly time step

[28]. BETHY is a fully prognostic model, currently driven by climate and radiation data between 1979-2003.

Furthermore, it is possible to forecast the future nature of the terrestrial biosphere under prescribed climate

situations [52].

In the current version of BETHY, atmospheric CO2, as input into the model is kept constant. Both

direct and indirect effects of increased atmospheric CO2 levels on the terrestrial biosphere (a fertilisation

effect) are poorly constrained by current research [24], and thus difficult to include adequately in the model.

The CO2 fluxes with the atmosphere are computed by BETHY and fed into the atmospheric transport

model, TM2 via a mapping routine onto a (roughly) 8◦ × 10◦ resolution grid [20]. For a passive tracer such as

CO2, TM2 acts as a linear function. It features vertical transport via convection and turbulent eddy mixing,

and latitudinal/longitudinal transporting via analysed winds from the European Centre for Medium-Range

Weather Forecasts (ECMWF) [48] (in this case, from 1986 [52]). This single year meteorological driving

data means that often inter-annual variations in transport may appear as variations in the sources, and can

have an adverse effect on inter-annually dependent parameters.
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2.3.2 Data Assimilation

During calibration mode, CCDAS seeks an optimal parameter set, xp, for which the difference between model

simulation, M, and observations are at a minimum. It employs the cost function (J in Eq. 1), to evaluate the

fit of a model run to observational data (atmospheric CO2 concentration data from GLOBALVIEW network

[16] — d). The derivative provides information regarding the gradient of J with respect to the parameters,

guiding optimisation [48]. Cd and Cp are covariance matrices expressing the uncertainty in observations,

d, and the priors, p respectively (Eqs. 2 and 3) [28, 48, 30].M(x) is the model output (atmospheric CO2

concentrations calculated via the model using parameter set x) and T denotes a transpose. Using an iterative

loop, the model tunes the parameter set, starting from the initial input values, x0, moving through various

x, to reach xp — the predicted (or optimal) parameter set.

J(x) =
1
2

(
(M(x)− d)T Cd

−1(M(x)− d) + (x− p)T Cp
−1(x− p)

)
(1)

Cd =
(

∂2J(x)
∂x2

)−1

= H(x)−1 (2)

Cp =
(

∂M(x)
∂x

)
Cd

(
∂M(x)

∂x

)T

(3)

The approach is Baysian. Both observations (d) and priors (p) are assumed to have Gaussian probability

distributions [28]. The posterior uncertainties on the tuned parameters (x from the final iteration — or xp,

with a minimum in J ) is approximated by the inverse Hessian of J at this point [28, 48].

Finding a minimum in J is non-trivial due to the non-linear nature of the model. The function may

contain many local minima, sharp changes in gradient, troughs, peaks and shear edges. It is therefore

important to make the best possible estimates for the initial values of the tuneable parameters (x0) to guide

the optimisation towards a physically meaningful minimum.

2.3.3 Current Fossil Fuel Emissions in CCDAS

Currently, fossil fuel CO2 emissions are designated a prescribed background flux in combination with ocean

flux and contributions from land use change (see Fig. 2) [48, 52].

The annually invariant flux magnitudes are from Marland et al. (2006), resulting in step increases

between years from 1979 and 2003 [38]. Two spatial distributions of population density are used to weight
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the emissions on a national level. For the years prior to 1991, 1990 density distribution (from Andres et al.

(1996) [2]) is used, and for the years after 1994, 1995 distribution (from Brenkert (1998) [9]) is used (i.e. the

distribution is static). The years in between are a linear interpolation of the two [52]. Quantification of the

effect of this temporally changing distribution is not cited in the literature. It is unclear to what extent this

minimal interpolation (5 years out of a usual 21 year calibration) corrects the distribution. Static emissions

distribution is cited as the cause of poor fit to observations in a number of models, however attempts to

quantify this are few [48, 17, 15].

3 Theory

3.1 Fossil Fuel Emissions

The main shortcoming of the data sets currently used in CCDAS (and many other carbon cycle models) is

the lack of seasonality [48]. Inappropriate treatment of a seasonal cycle within emissions may lead to spatial

and temporal errors in results [44, 18].

Cobs = Cff + Cot +
N∑

i=1

Cres (4)

Inversion studies employ existing atmospheric CO2 and fossil fuel flux data to infer residual carbon

exchange with the terrestrial biosphere and the oceans [18]. Fossil fuel CO2 emissions are prescribed as a

background or pre-subtracted flux [18, 4, 26, 8, 11], as in Eq. 4, where Cobs is the observational atmospheric

CO2 data, Cff is fossil fuel emission data, Cot represent other background fluxes that may be considered and

Cres is the contribution to residual (biosphere and oceanic) fluxes from N discrete regions [18]. This latter

flux is calculated via a final step of subtracting the background fluxes - Cff and Cot from the observational

data.

Typically, fossil fuel emissions are considered well quantified (in comparison to biotic fluxes) and hence

are provided with small uncertainty. Despite regionally different intra-annual variability, it is often deemed

unnecessary to include since its rate of growth (or depletion in recent years in some areas) is much less than

the inter-annual variability of the atmospheric CO2 [46].

There are two main problems with this approach. First of all, often, the fossil fuel emissions are much

greater than the net terrestrial sinks and so when subtracted, the final result is very sensitive to errors in the

fossil fuel emissions [26]. As both temporal and spatial resolutions of the inversion models increases, more
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and more bias is inherent in the process. Gurney (2005) used a number of atmospheric transport models

to compare flux estimates with and without the inclusion of seasonal variation in fossil fuel emissions. In

many cases the introduction of seasonality lead to a bias to the order of 50% on the residual fluxes (Cres) in

the model [18]. Furthermore, introducing a peak-to-peak seasonal variation of roughly 30% to mid-Northern

latitudes incurred a difference in annual flux of up to 0.5 GtC. This suggests that the inversion as a means

of inferring the residual fluxes, on a smaller than annual temporal scale, seasonal variations of fossil fuel

emissions are important.

Although attached to a process-based terrestrial biosphere model, it is likely that calibration in CCDAS

will be similarly sensitive to seasonality in fossil fuel emissions. It is the information regarding correct

reconstruction of the atmospheric concentrations (including seasonality) that directs calibration and tunes

parameters.

Seasonality in fossil fuel emissions are often omitted from inverse (or data assimilation) models because

of the large uncertainties attached to the phase, amplitude and progression over time of the cycle. Few

studies have managed to quantify these important factors, especially on a global basis. Rotty et al. (1987)

assumed the driving factors behind these seasonalities in emissions are likely to lie mainly in energy demand

through heating (dependent on seasonal variations in climate and weather) [50]. Studies on areas in Northern

European CO2 emissions display significant winter highs with a mean seasonal peak-to-peak of 1.4ppm (2

× that of Rotty et al.), contributing to just over 10% of the seasonal cycle in atmospheric concentration in

some areas [35].

Blasing (2005) showed that in the United States, there are two main overriding cycles in emissions. Coal,

used for heating, produces emission peaking in the winter months, in agreement with Rotty et al, although

with a substantially higher mean peak-to-peak of ∼0.035GtC. Natural gas however displayed two peaks —

one attributed to electricity usage through indoor activities in winter, and another in the summer due to

usage the of air conditioning with an average peak-to-peak of ∼0.02GtC [6]. Furthermore, over time it

is suggested that this seasonality decreases. Summer emissions displayed more rapid increase than winter

emissions, suggesting a change in the annual pattern of energy use [6]. Other studies in energy use have

showed similar results. In hotter climes such as Spain, evidence shows that energy consumption has changed

phase. Whereas previously highs in winter months dominated the seasonal cycle, for the past decade or so,

summer peaks in consumption are far in excess of those in winter [44]. Similarly, in the US, demand depends

greatly on the geographic location of the State — energy use profiles from states further south show more

dependence on high summer temperatures than low winter ones [51].
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On other spatial and temporal scales, further demand drivers may need to be considered [44, 18, 29, 26].

Since CCDAS works on a monthly scale, these need not be considered. However, the case for inclusion of

seasonality in emissions is clear. Without intra-annual variation in emissions, errors in the quantification of

residual fluxes may be large. It is also hoped that through inclusion in CCDAS, some of the unknowns in

the seasonal trends of fossil fuel emissions may be constrained.

3.2 Models and Approaches

Research with regards to the carbon cycle has thus far tried to encompass the anthropogenic inputs in ways

which vary substantially in depth and realism. The following subsections describe various approaches to

modelling anthropogenic CO2 emissions. Over the last decade, largely due to vast and varied data sets

being made accessible, bottom-up CO2 emissions modelling has been made possible. There are two main

approaches - one which identifies the direct sources of anthropogenic CO2 (largely based around fossil fuel

combustion) and one which concentrates on the drivers behind the emissions (a socio-economic treatment).

3.2.1 Energy Decomposition

There are two main approaches to energy decomposition techniques [25]. The reference approach concentrates

on the supply side of energy data, accounting for carbon mainly on the supply of primary fuels and net

quantities of secondary fuels brought into the economy (trade) [59]. The sectorial approach focuses on the

consumption of energy - a sectorial breakdown of aggregate CO2 emissions by the amount of each type of

fuel consumed by each sector of the country [59].

Reference Approach. The breakdown of emissions is by fuel type. Raupach (2007) broke down these

contributors into seven sources, as in Eq. 5: combustion of solid, liquid and gaseous fuels (Fsolid, Fliquid and

Fgas respectively); flaring of gas from wells and industrial processes (Fflare); cement production (Fcement);

oxidation of non-fuel hydrocarbons (Fnon−fuelHC) and fuel from ’international bunkers’ used for shipping

and air transport (Fbunkers) [47]. These vary on a national basis as well as temporally [39, 7]

F = Fsolid + Fliquid + Fgas + Fflare + Fcement + Fnon−fuelHC + Fbunkers (5)

Qi = consumptioni = productioni + importsi − exportsi − bunkersi − changes in stocksi (6)
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Fi = Qi × FOi × Ci (7)

For each of these emissions-producers, i, the consumption nationally is calculated as in Eq. 6, and then

converted into CO2 emissions via Eq. 7. Q represents the quantity of fuel i (i.e. the ’consumption’ from

Eq. 6), FO the fraction oxidised and C the carbon content [1, 7, 39]. On a national level, this allows for

a fairly accurate database of emissions to be built up. Andres et al. (1999) quote an average error of 8%

in their final database, although this error may range anywhere between -340% and 90% given a particular

year and country [1].

The main source of error in this type of analysis comes from omissions in data sets, and changes in

boundaries and geographical definitions of countries. Often older trades inventories for fossil fuel data are

grouped together, limiting the accuracy of calculation in Eq. 7. Furthermore, any higher resolution of data

(spatially or temporally) must be done by weighting. Frequently seasonality is excluded for this reason

(data is not available due to legalities in collection) [18]. Positively however, this approach allows for global

coverage over relatively long periods of time, due to the available data [37]. It also makes emissions proxies

easier to detect (on a national level) due to data being available for countries in a diverse range of economic

and social situations (more is discussed on this topic in the socio-economic treatment). BP quote that coal is

the fastest growing energy source over the globe, and that coal usage can in fact dictate the % contribution

of a country to global CO2 emissions [10].

Sectorial Approach. The sectorial approach aims to provide highly resolved estimates for CO2 emissions

that come from a process-based (electricity generation, residential heating, vehicle propulsion etc.) model

[17]. It has thus far only been applied to individual, and predominantly developed, nations [17, 15, 59].

Globally, freedom and quality of data are the main restrictions to this approach [17].

An example is the Vulcan project (and soon Hestia, which will build on the findings of Vulcan) —

a model for the USA’s CO2 emissions resolved by 10km and an hourly time step [19]. CO2 emissions are

grouped by types of source - point sources which encompasses stationary sources such as power stations;

area sources such as office buildings and wildfires; and mobile sources relating to vehicular emissions.

Another approach is to deconstruct emissions into economic sectors such as public power; refineries,

extraction and distribution of fossil fuels; industry; road traffic; waste and agriculture. These sectors are

then further sub-divided, providing a process-based approach to the drivers. As an example, the public

power sector’s contribution to emissions is dictated by energy demand, which in turn may be related to
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climate-drivers. Temperature, according to Sailor (2001), accounts for 80% of the variance in electricity

consumption [51].

Uncertainty is introduced to the model through simplification on other levels. For example, homogeneity

in demand may be applied across whole countries. Other drawbacks again are necessity for large amounts

of data (from household energy bills to meteorological data), and the time necessary for models to run [19].

If this technique were applied worldwide then the time for such a model to run would be costly.

3.2.2 Socio-economic Treatment

Studies which attempt to reconstruct CO2 emissions through economic and social proxies attempt to find

correlation and trends in national statistics which reflect those in emissions data [41].

Socio-economic models tend to work on the same scales as inversion processes — annual and national,

though they may forecast tens of years into the future [32, 36]. This is the main advantage over all previously

detailed approaches. Economic theory and forecasting is well-established [23]. Global economics follow

relatively predictable trends, which, if linked to emissions, may be exploited in estimations of how CO2

emissions trends may alter in the future. Integrated Assessment Models (IAMs) combine the economic an

scientific drivers of climate change, with depth in both areas associated to the purpose of the study - usually

policy evaluation or optimisation [32]. Often uncertainty with prediction is only assessed crudely [32, 57]. The

uncertainty attached to such predictions are only as good as the modeller’s ability to predict decisions [32].

The largest uncertainty with regards to a socio-economic approach lies in societies’ preferences. Once issues

of social choice are restricted (or reduced) through policy and co-operation, the uncertainty in prediction

decreases [55].

EKC. The Environmental Kuznets Curve (EKC) describes a hypothesised situation where as GDP in-

creases, pollutants increase almost linearly, until a certain point, where greater income dictates that emis-

sions hit a maximum and will thereafter decrease with increasing wealth (the inverted U - see Fig. 3) [12].

At a certain level of economic development, more efficient infrastructure and pollution controls are afforded.

There is little doubt that both CO2 emissions and energy consumption are correlated with the size of a

country’s economy, but since 1960 this correlation has been weakening [49, 55]. Research roughly a decade

ago into a number of pollutants and their correlation to GDP stated that this ’turning point’ tended to occur

before countries reached a GDP of US$8,000 [49].

Turning points of per capita emissions of CO2 in particular generally fall well outside the range of other
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Figure 3: Example of the ’inverted U’ relationship between environmental degradation (in this case, increasing
CO2 emissions) and GDP in the Environmental Kuznets Curve, featuring the transition point from environmental
destruction to improvement.

pollutants [12]. The uncertainty related to the turning point is high and results in little confidence in any

estimations made [12]. Cases in which the turning point is well defined with relatively little uncertainty tend

to relate to pollutants which have a localised effect. If a pollutant has a more global or indirect effect, a

downward trend in emissions corresponding with increased GDP is not necessarily instigated [12].

Using the same correlation, monotonic relationships between CO2 emissions and economic growth have

also been found [49], demonstrating that results are highly dependent on the samples and data used in the

study (i.e. which country is tested) [54]. When separated into low, middle and high income countries, it

is found that a relatively small number of wealthy countries (with the highest emissions) dictate the global

trend by becoming more efficient, while the rest of the countries worsen [49]. Few countries have moved up

development stages with regards to efficiency, despite economic growth.

Furthermore, there is no reason to believe that most countries will reach the transition point [49]. Stern

(2003) argues that one possible reason for this is because of the nature of a free trade economy. Economic

growth resulting in migration from ’developing’ to ’developed’ incites a transference from capitol gains

through labour and natural resources to human and manufactured capitol - in effect, an ’outsourcing’ of

emissions intensive industry. Once a significant number of countries have made this transition, there are no

longer any countries to outsource to - the trend is finite [54]. In fact, trade is not discussed in the majority

of literature on the EKC and often may result in spatially transferred emissions, rather than reductions

[54, 55]. This also means that it is not viable to model developing countries’ futures on historical evidence
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from the development of the wealthier countries.

IPAT and Kaya. The IPAT identity in Eq. 8 cites three constituent drivers of the change in emissions -

population, affluence (income per capita), and technology (emissions per unit income) [41]. When discussing

CO2 emissions in specific, this relationship is often referred to as the Kaya identity (see Eq. 9), and is

frequently summed over regions of the globe with similar emissions and economic profiles, or countries, i

[47, 55]. Here, P is the population, G is GDP (Gross Domestic Product) and E is energy consumption. The

emissions (F ), are defined as amount of carbon per unit of fossil energy [47].

impact = population× affluence× technology (8)

CO2 emissionsi = Pi

(
Gi

Pi

)(
Ei

Gi

)(
Fi

Ei

)
(9)

Using these simple relationships, it is possible to factorise the growth of emissions - to weight the depen-

dence of an impact on each. For example, a 1.7% increase in CO2 emissions per year (on average) since 1850

may be factorised as follows:

1.7% CO2 increase = 3% growth in GDP

− 1% decline in energy intensity of GDP

− 0.3% decline in carbon intensity of the primary energy (10)

The growth in GDP may be factorised further:

3% growth in GDP = 1% growth in population + 2% growth in per capita income (11)

Unfortunately, growth in emissions is not linear over time [23]. The drivers in global emissions after 2000

shows a reversal in the long-term trends with global carbon intensity (CO2 emissions per unit of energy,

E ) and energy intensity (unit of energy, E per unit of GDP, G) decreasing with increasing emissions [47].

Distribution of emissions has higher dependence on different factors for different regions - Fi and Ei must be

weighted towards developed regions and Pi must be weighted towards developing regions in order to correct

for this [47]. Stern also concluded that population growth and GDP were the most important proxies for
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developing countries and energy intensity reductions were important in transition (fast developing) economies

such as China [55, 59]. The greatest uncertainty in driver quantification and forecasting is in developing

regions, whose transition is difficult to predict.

However, no single driver is fundamental or independent [41]. For example, population growth depends on

fertility and death rates, which in turn depend upon education, income, social norms and health provisions.

All of these aspects can be cited as contributors to the long-term productivity, economic growth and structure

and technological change within a country. The main drivers behind emissions growth depend upon shared

factors [41]. This results in large uncertainties which makes probabilistic scenarios impossible with current

knowledge [42].

Edmonds and Joos (2004) recognise the importance of this technological advancement in stabilisation of

CO2 within the atmosphere. Not all driving forces are adequately encompassed within this process, which

is why they do not determine emissions concisely [13, 43].

3.2.3 Evaluation

Unfortunately, socio-economic theory is too qualitative for this study. Poorly constrained factors driving

CO2 emissions may lead to indeterminacy — there may not be sufficient information in the atmospheric con-

centration data to constrain such uncertain and inter-dependent parameters. Furthermore, socio-economic

factors do not exhibit intra-annual variations. Process-based modelling, whilst encompassing seasonality

intrinsically, is likely to be too costly computationally, with too many factors requiring tuneable parameters,

and too much globally unavailable data.

Information in observational data may not be sufficient to constrain more than a few parameters, and so

the following fossil fuel CO2 emissions model is constructed — concentrating on cost-effective running and

minimal parameter addition.

4 Model

4.1 Base Level Emissions

In order to reduce the number of tuneable parameters, land masses are divided into five regions (See Fig. 4).

Antarctica and the Arctic are excluded as they have zero emissions.

1. Europe and Northern Asia
2. Mid-North Africa, the Middle-East and Central and Southern Asia
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Oceania

Figure 4: Geographical distribution of regions (0.5◦× 0.5◦ resolution). Black circles indicate positioning of atmo-
spheric CO2 observation stations used in this study. Lists of observation stations and their locations may be found
in Appendix A and the countries in each region in Appendix B.

Figure 5: Total annual CO2 emissions from fossil fuel use per region (Fr
n) as from Marland et al. (2006) [38]. Trends

over the past ∼250 years (left); Data required for calibration period (1979 - 1999) (right).
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3. Southern Africa, the tip of South-East Asia and Oceania
4. Central and Northern America
5. South America

Since seasonality depends on hemisphere (opposite winter and summer dictating energy consumption)

[51, 18], regions do not cross the equator where possible. Regions also attempts to encapsulate countries

with similar emissions, or emissions growth in order to reduce misallocation within the region by population

weighting. This is not always possible.

Fossil fuel emissions data is taken from the CDIAC data set for the years 1978 to 2000 (from Marland

et al. (2006) [38]. Annual emissions are totalled for each region. This grouping is a source of uncertainty,

essentially taking a countries’ emissions and reallocating them across a larger area. Annual emissions per

region (F r
n , where n denotes year, and r the region) are linearly interpolated so that monthly (m) estimates,

F r
m, may be made:

F r
m =

(
F r

n+1 − F r
n

12

)
×m (12)

F 0
i,j,m = F r

m ×W r
i,j (13)

Data for the year before and the year after the calibration are required for interpolation. The annual

average emission is taken to be the value for the centre of the year, and other values adjusted around it.

The total annual flux is therefore not necessarily equal to the original value in the data set, and the largest

errors are incurred on the first and last years of the calibration period. The greater the number of years the

model is calibrated, the lower the error from this source. All emissions values are monthly, but in gC yr−1.

The emissions are then multiplied by the population fraction weighting (as in Eq. 13) to provide the

spatial distribution of base level emissions (F 0
i,j,m). Population data is from SEDAC (the Socio-economic

Data and Applications Center), for the year 1995 on a 0.5◦× 0.5◦ resolution [5]. A grid cell is allocated to a

region and population summed on a regional basis. Each grid cell is then given a population fraction (W r
i,j ,

where i and j are the co-ordinates of the grid cell, and r is the region), corresponding to the fraction of the

total population of the region in that grid cell. This data is then aggregated to TM2’s low resolution grid —

∼8◦× 10◦. On these scales therefore, one grid cell may contain population relating to more than one region.

Gridded population fraction representation may be found in Appendix C.

This is likely to be one of the largest sources of error temporally. The distribution is static throughout

the calibration run. Spatially, as the resolution of the model decreases, the error in allocation of emissions
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increases. Any single populated grid cell on the 0.5◦× 0.5◦ resolution will mean that the corresponding grid

cell on the lower resolution will too be allocated emissions - they will in effect be distributed over much

larger areas. In cases where there is very little actual land mass in the low resolution grid cell, this likely

to be unimportant - the relative fraction of population is likely to be so low the emissions from this area

will not significantly affect atmospheric concentration. In very densely populated coastal areas close to CO2

observation stations, this is likely to be more of a problem.

4.2 Seasonality

A seasonal cycle taken from Gurney (2005), is imposed upon the base level emissions (F 0
i,j,m) [18]. The total

emissions per grid cell per month, belonging to region r — Fr
i,j,m — is then as in Eq. 14.

F r
i,j,m = F 0

i,j,m + SrF
0
i,j,msin(θj)cos

(
2π(m− 1)

12

)
(14)

Sr is the tuneable parameter to be optimised through CCDAS calibration, and determines the amplitude

of the seasonal cycle. As a factor multiplied by the total base level emissions, Sr represents what fraction

of those emissions are governed by seasonality. For example, if S = 0.5, then the seasonal cycle has a

peak-to-peak equal to half of the total emissions (or an amplitude equal to quarter of the emissions). The

sin(θj) term encompasses the latitudinal dependence (greater seasonality at higher latitudes, with opposite

seasonal cycles for Northern and Southern hemispheres) and the cos(...) term depicts variation dependent

on the month, m.

Monthly flux in GtCyr−1 are output from the model on a ∼8◦×10◦ grid, where the total emission per

grid cell is equal to the sum of emissions from each region contained within that grid cell. (A high resolution

— 2◦×2◦ — optional version is also provided, should TM2 be upgraded to the BETHY resolution).

4.3 Model Flow

The overall model flow within CCDAS is now as in Fig. 6. The fossil fuel emissions now run in parallel to

BETHY figuratively. The fluxes from CO2 emissions are added to those from terrestrial processes in BETHY

and the remaining background fluxes on the resolution of the transport model (TM2). The total flux is then

passed through TM2 and atmospheric CO2 concentrations (in ppm) are compared to observations from

GLOBALVIEW [16].

The cost function, J and its gradient with respect to the parameter set x (now totalling 62) is calculated
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(as in Eq. 1) in an iterative loop, until a minimum in J is found. This is the calibration (or optimisation)

process.

Offset Parameter (1)

ff Parameters (5)BETHY Parameters (57)

ff Emissions ModelBETHY

TM2
Background

Fluxes

Fossil Fuel
Fluxes (F        )

Terrestrial
Fluxes

Observational
Data

Atmospheric
Concentrations

Cost Function Evaluation (J)

i,j,m

Figure 6: ff model flow diagram in calibration. BETHY and the fossil fuel emissions model now run in parallel. The
total number of parameters (in lightly shaded boxes) to be optimised through calibration is now 62 — 1 representing
base atmospheric concentration, 57 associated with processes in the terrestrial biosphere model, BETHY, and the
additional 5 representative of the amplitude factor of the seasonal cycle of fossil fuel emissions (one for each region).
Dark shaded boxes indicate CO2 fluxes and atmospheric concentrations. White boxes indicate mapping between
quantities, and the downward arrow indicates overall model flow. The final calculation of J directs the next iteration
in the calibration (changes the parameters towards a better fit to observations). Once a minimum inJ is found,
calibration is stopped. The background fluxes now consist only of CO2 flux due to land use change and oceanic
carbon transference. All parameters are listed in Table 1

5 Methods

Two versions of CCDAS are used in this study — one with fossil fuel emissions prescribed as a background

flux — the head version (referred to as hv from this point onward), and the version described in Section 4

with an emissions model running parallel to BETHY (referred to as ff). The difference between the models’

output is analysed and compared to gain insight into the effect of the introduction of seasonality in emissions.

5.1 Model Run — Calibration

Sr is given an initial value (x0) of 0.3 (30% seasonal variation of total emissions) for all regions. This

follows suggested realistic seasonal variation according to Gurney (2005) [18]. The uncertainty on this (σi)

is estimated at ±0.5. The distribution therefore encompasses the higher level of seasonality cited by Gurney,
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whilst the lower range encompasses the possibility of a switched seasonal cycle. Sr is unconstrained, meaning

that there are no limits on what value it may take within the model. All other initial parameter values and

associated uncertainties are kept as in previous studies of CCDAS for both the hv and ff model versions

[48, 52].

Both models are calibrated on high resolution (2◦× 2◦), for 21 years (1979 - 1999), with a 5 year spin-

up phase [48, 52]. After calibration, the predicted parameters (xp) for both models are given, and their

uncertainties (σp) provided by the square root of the diagonal elements of the inverse de-noised Hessian in

Eq. 2.

5.2 Analysis

5.2.1 Fit to Data

An overall fit to observational data is dictated by the value of the cost function (J ) — if the fossil fuel

emissions are improved, the cost function (as in Eq. 1) is expected to be smaller. The quantification of the

fit is made by calculating the χ-squared. This is equal to twice J divided by the number of observations.

CGLOB = 0.25CSPO + 0.75CMLO (15)

An estimate of fit to a global concentrations is made by calculation of CGLOB as in Eq. 15, where CSPO

is the atmospheric CO2 concentration at the South Pole and CMLO is that at Mauna Loa. An emphasis

is put on investigating the fit of the seasonality of the concentrations by removing the moving average of

both data and model output from the overall totals (d and M(xp) respectively). This process is detailed

in Appendix D.1. An average seasonal cycle is constructed, and an R2 fit of model output to observational

data is calculated (R2 fitting is detailed in Appendix D.2).

The method for concentration deconstruction for CGLOB (removal of the running mean) is repeated

individually for the MLO and SPO stations to assess the fossil fuel model’s ability to reconstruct atmospheric

concentrations with both high and low seasonality. The BAL (Baltic Sea) and TAP (Tae-Ahn Peninsula)

observation stations’ data and fit are also investigated — both are cited as stations whose concentrations are

poorly reconstructed by CCDAS, thought to be due to a lack of seasonality in the fossil fuel emissions [48].
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5.2.2 Parameters and Seasonality

The optimised (or predicted) parameters (xp), and their associated uncertainties (σp) are analysed to provide

insight into error reduction within the model (provided by the formula 1 - σp/σi, where σi and σp are the

uncertainties relating to the initial parameter set (x0) and predicted parameter set (xp), respectively), and

any differing importance of various processes within the models. Since each optimised parameter is related

to a process within CCDAS, information regarding any changing importance in a process may be found from

a change in parameter value.

Time series of total CO2 flux from each region are taken from model output (summing over all grid cells for

a given month —
∑

i,j F r
i,j,m). Seasonality at the upper and lower bounds given by the predicted uncertainties

on the parameters are also investigated, by running the model with these values (i.e. Sr = xp ± σp). Mean

monthly terrestrial and fossil fuel fluxes are calculated by summing the total flux over all grid cells for each

month in turn, and then averaging over the number of years in the calibration period. This provides an

overall impression of their seasonal cycles, and highlights and large changes between hv and ff models.

5.2.3 Fluxes

Global Basic comparison of the two models’ mean annual, and mean monthly terrestrial and fossil fuel

CO2 flux is made to assess any large changes through the addition of the fossil fuel model. This is done by

summing the flux over all grid cells over all months within a given year (or month). These annual totals are

then averaged over the model calibration period. The standard deviation provides information relating to

the inter-annual changes in each flux. Mean Northern and Southern Hemispheric fluxes are also studied.

For the fossil fuel emissions in ff, the mean annual flux from each region is also calculated and checked

against original totals from the original CDIAC data set.

Spatial Distribution Mean monthly and annual distributions of both terrestrial flux and fossil fuel emis-

sions are constructed, and the difference between them studied. The areas, (and times of year) with the

largest difference is the focus, with a view to highlighting distribution changes in seasonality and mean

annual flux between hv and ff.

Fit to observations of atmospheric CO2 concentrations at stations located near large perturbations in

mean seasonal or annual flux are calculated using the R2 technique. An estimation of improvement in fit

between hv and ff models is given via Γ; a percentage expression of the change in R2 towards a prefect fit

to observations (calculation details in Appendix D.3).
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A range of stations distributed globally are also chosen for this analysis, to obtain a more general rep-

resentation of the effects of introducing a seasonal cycle in fossil fuel emissions. Patterns latitudinally or

regionally are investigated as an assessment of whether there are trends in the improvement of model fit to

observational data.

6 Results

6.1 Fit to Data

6.1.1 Global

After calibration, the values of J are 7749 and 6024 for the hv and ff model versions respectively. These

translate into χ-squared values of 2.23 and 1.73, meaning that the introduction of seasonality in the fossil

fuel emissions has improved the fit to observational data. Relative to a base of spatially and intra-annually

invariant background fossil fuel emissions, the introduction of seasonality improves the fit by 37.3%, whereas

the introduction of a (limited) temporally changing emissions source improves the fit by only 22.4%.

Figure 7: hv (red), ff (blue), observations (black). Left: CGLOB seasonal cycle over calibration period (inter-annual
changes removed via moving average). Mean seasonal cycle (right).

Seasonality in CGLOB has been reproduced more accurately in the ff model. Fig. 7 shows that the mean

seasonal cycle in atmospheric CO2 concentration of the model output now falls within 1σ of the mean of

the observations. The R2 of the overall fit is now 0.91 in comparison to the hv fit of 0.75. The seasonal

fit has improved from 0.91 to 0.98. The slight lag in the seasonal cycle has also been corrected somewhat,

with both high and low amplitude peaks corresponding temporally with those in the observations (in the hv
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model output, the low amplitude peak was delayed by ∼2 months).

6.1.2 Individual Stations

Figure 8: Station = SPO (South Pole). Black = observational data, blue = hv model output, red = ff model output.
Left: monthly atmospheric CO2 concentration, over model calibration period. Right: running mean (inter-annual
trend) removed, and mean seasonal cycle constructed over the central 19 years of calibration. Dashed lines signify
1σ of distribution either side of the mean.

Figure 9: Station = MLO (Mauna Loa). Black = observational data, blue = hv model output, red = ff model
output. Left: monthly atmospheric CO2 concentration, over model calibration period. Right: running mean (inter-
annual trend) removed, and mean seasonal cycle constructed over the central 19 years of calibration. Dashed lines
signify 1σ of distribution either side of the mean.

The overall fit is improved for atmospheric concentrations at both the South Pole and Mauna Loa stations

(from an R2 of -0.67 to 0.38 for SPO, and from 0.79 to 0.92 for MLO — hv and ff respectively). The model

reconstructs both areas with high and low seasonal cycles well (See Figs. 8 and 9). Most importantly from

this result, the phase lag of the seasonal cycle at SPO has been corrected. With regards to the seasonal
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Figure 10: Station = TAP (Tae-Ahn Peninsula, Korea). Black = observational data, blue = hv model output, red
= ff model output. Left: monthly atmospheric CO2 concentration, over model calibration period. Right: running
mean (inter-annual trend) removed, and mean seasonal cycle constructed over the central 19 years of calibration.
Dashed lines signify 1σ of distribution either side of the mean.

Figure 11: Station = BAL (Baltic Sea). Black = observational data, blue = hv model output, red = ff model output.
Left: monthly atmospheric CO2 concentration, over model calibration period. Right: running mean (inter-annual
trend) removed, and mean seasonal cycle constructed over the central 19 years of calibration. Dashed lines signify
1σ of distribution either side of the mean.

23



variation alone the R2 fit is improved from 0.17 to 0.78 for SPO, and from 0.94 to 0.98 for MLO. Fig. 10

shows that for the Tae-Ahn Peninsula (TAP), the seasonal cycle (in itself is an adequate fit — R2 is 0.80 for

hv, and 0.89 for ff), is offset from the observational inter-annual trend (both curves fall below that of the

observational data). This deconstruction technique suggests that it is the background term which is in fact

the source of most of the error, not the seasonality as suggested in previous studies [48].

Similar results are shown at the Baltic Sea station (BAL). Despite being a little too high in March/April,

the seasonal fit is good (R2 fit = 0.90 for hv, and 0.87 for ff). However, the inter-annual variation is

displaced. Peaks fail to be high enough, while troughs are too low.

6.2 Parameters

Under the unbound calibration, parameters and associated uncertainties as in Table 1 are predicted by hv

and ff. Between the two model calibrations, most parameters have changed only within a small range. The

parameters whose values have changed most significantly relate to GPP in BETHY.

Sr parameters are listed in Table. 2. The parameters for regions 1 and 4 (two of the largest emitters, and

the most northerly regions) are negative, predicting a reversed seasonal cycle. The parameters for regions 3,

4, and 5 are very high, with values around 2. This suggests that the amplitude of their seasonal cycles are

roughly equal to the total emissions for the regions.

Fig. 12 displays the reduction in error with respect to all parameters through calibration of the ff model.

There is little or no error reduction in the fossil fuel seasonality parameters (Sr — numbers 58-62); all

predicted uncertainties being < 2% below their original values.

Fig. 13 shows regionally divided output of the fossil fuel model over the calibration period (
∑

i,j F r
i,j,m).

Since the uncertainty on the parameters (σp) is still large, the range of seasonal variation for each region is

extensive. Fig. 14 shows that for region 2, the lower range on Sr constitutes a 6 month change in phase of the

seasonal cycle. For region 4, the troughs of the cycles constitute negative emissions - a physical impossibility.

6.3 Fluxes

6.3.1 Global

Mean Annual Fluxes Globally, the mean annual CO2 flux from fossil fuel emissions has increased

by 0.14GtCyr−1 in the hv model. The terrestrial biosphere overcompensates for this, and decreases by

0.15GtCyr−1. This makes the mean annual global flux slightly less in the hv model (see Fig. 15).
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Table 1: Parameter numbers, symbols (where bracketed acronyms denote various PFTs), values and associated
uncertainties: Initial (x0) and predicted as per hv and ff model calibration (xp). Units for each parameter are
detailed below.

Parameters Initial Predicted
No. Symbol x0 σi xp (hv) σp xp (ff) σp

1 V25
max (TrEv) 60.0 20.00 24.19 49.60 25.57 36.19

2 V25
max (TrDec) 90.0 20.00 38.89 52.47 58.30 7.96

3 V25
max (TmpEv) 41.0 20.00 89.05 8.17 -45.99 1782.85

4 V25
max (TmpDec) 35.0 20.00 31.11 18.43 91.84 7.38

5 V25
max (EvCn) 29.0 20.00 2.67 0.00 47.29 11.86

6 V25
max (DecCn) 53.0 20.00 93.31 2.82 71.41 14.78

7 V25
max (EvShr) 52.0 20.00 92.39 17.92 89.18 10.96

8 V25
max (DecShr) 160.0 20.00 51.02 57.69 52.09 29.85

9 V25
max (C3Gr) 42.0 20.00 23.71 7.36 2.88 26.40

10 V25
max (C4Gr) 8.0 20.00 1.96 46.48 2.68 31.66

11 V25
max (Tund) 20.0 20.00 37.68 0.00 7.23 26.20

12 V25
max (Wetl) 20.0 20.00 34.47 11.62 21.90 18.17

13 V25
max (Crop) 117.0 20.00 67.15 3.99 42.41 13.23

14 aJ,V (TrEv) 1.96 5.00 1.46 6.32 0.76 12.02
15 aJ,V (TrDec) 1.99 5.00 1.72 5.78 1.97 4.99
16 aJ,V (TmpEv) 2.00 5.00 1.42 0.00 2.00 5.00
17 aJ,V (TmpDec) 2.00 5.00 2.52 0.00 1.55 6.43
18 aJ,V (EvCn) 1.79 5.00 1.28 0.00 0.63 8.94
19 aJ,V (DecCn) 1.79 5.00 2.41 0.00 2.31 3.88
20 aJ,V (EvShr) 1.96 5.00 1.98 0.00 1.82 5.36
21 aJ,V (DecShr) 1.66 5.00 1.88 0.00 1.62 5.09
22 aJ,V (C3Gr) 1.90 5.00 2.48 0.00 2.00 4.75
23 aJ,V (C4Gr) 140.0 20.00 178.74 0.00 24.36 112.95
24 aJ,V (Tund) 1.85 5.00 2.27 0.00 1.98 4.66
25 aJ,V (Wetl) 1.85 5.00 2.02 0.00 2.44 3.79
26 aJ,V (Crop) 1.88 5.00 0.86 0.00 2.20 4.27
27 fR,leaf 0.40 25.00 0.14 0.00 0.11 6.35
28 fR,growth 1.25 5.00 01.82 0.00 1.00 5.52
29 Q10,f 1.5 100.00 1.75 0.00 1.05 4.01
30 Q10,s 1.5 100.00 0.35 0.00 1.04 4.31
31 τf 1.5 270.95 0.85 0.00 28.29 2.96
32 κ 1.0 230.00 3.72 0.00 2.51 17.13
33 fS 0.2 43.07 0.75 0.00 16.27 14.72
34 ERd

45000.0 5.00 40114.24 0.00 24049.30 8.84
35 EVmax 58520.0 5.00 72953.87 0.00 53516.15 5.45
36 EKO

35948.0 5.00 34522.58 0.00 35892.81 5.01
37 EKC

59356.0 5.00 53429.59 0.00 57681.20 5.14
38 Ek 50967.0 5.00 47429.39 0.00 49409.11 5.16
39 αq 0.28 5.00 0.39 0.00 42.25 3.24
40 αi 0.04 5.00 0.0002 0.00 0.000009 21.96
41 K25

C 460.0 5.00 02.70 0.00 0.018 12.78
42 K25

O 330.0 5.00 320.00 0.00 346.60 4.76
43 αΓ,T 1.7 5.00 0.68 0.00 0.93 8.83
44 β(TrEv) 1.0 25.00 1.07 0.00 0.54 31.71
45 β(TrDec) 1.0 25.00 0.99 0.00 0.92 24.27
46 β(TmpEv) 1.0 25.00 0.71 0.00 1.02 24.57
47 β(TmpDec) 1.0 25.00 2.32 0.00 1.42 17.49
48 β(EvCn) 1.0 25.00 0.88 0.00 0.72 12.48
49 β(DecCn) 1.0 25.00 0.71 0.00 0.66 11.97
50 β(EvShr) 1.0 25.00 2.17 0.00 2.60 9.54
51 β(DecShr) 1.0 25.00 0.25 0.00 0.31 52.19
52 β(C3Gr) 1.0 25.00 1.64 0.00 0.52 35.04
53 β(C4Gr) 1.0 25.00 0.75 0.00 1.36 18.34
54 β(Tund) 1.0 25.00 0.86 0.00 0.84 26.28
55 β(Wetl) 1.0 25.00 0.36 0.00 .35 56.94
56 β(Crop) 1.0 25.00 0.51 0.00 2.71 9.17
57 offset 338.0 0.30 335.98 0.30 336.89 0.05

Units are as follows: Vmax, µmol(CO2)m−2 s−1; aG,T , µmol(CO2)mol(air)−1(◦C)−1;
activation energies E, J/mol; tf , years; offset, ppmv; all others unitless.

Uncertainties are in percentage (if equal to zero, the error is too small to be expressed).
Uncertainties represent one standard deviation.
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Table 2: Additional parameters in ff : numbers, symbols, description, values and associated uncertainties: Initial (x0)
and predicted as per ff model calibration (xp). Parameters are unitless. Uncertainties are expressed as percentages
of parameter values and represent one standard deviation.

Parameters Initial Predicted
No. Symbol Description x0 σi xp (ff) σp

58 S1 Seasonality amplitude factor for region 1 0.3 166.67 -0.7022 70.91
59 S2 Seasonality amplitude factor for region 2 0.3 166.67 0.1009 492.84
60 S3 Seasonality amplitude factor for region 3 0.3 166.67 2.0474 24.42
61 S4 Seasonality amplitude factor for region 4 0.3 166.67 -2.1009 23.39
62 S5 Seasonality amplitude factor for region 5 0.3 166.67 1.9246 25.98

Figure 12: Uncertainty reduction in the ff model version. σi and σp denote the initial (pre-calibration) and predicted
(post-calibration) uncertainties respectively, associated with each parameter. Note that there is little/no uncertainty
reduction in Sr parameters (numbers 58-62).
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Figure 13: Predicted total monthly CO2 fossil fuel emissions for each region (
P

i,j F r
i,j,m) after calibration of Sr.

Summation over all regions is the fossil fuel flux output to TM2.

Mean Monthly Fluxes Fig. 16 displays the effect of introducing a seasonally varying fossil fuel source

on the global mean monthly terrestrial and fossil fuel seasonal cycles. The main effect on the terrestrial cycle

appears to be in increase in the amplitude of the seasonal cycle. The largest increase in emissions (positive

flux) occurs around June (+∼3GtCyr−1), but this is outweighed by an increase in the sequestration around

the end of the year (lower minimum in September ∼-6.25GtCyr−1). The phase of the cycle has also shifted

- with both maximum and minimum flux almost a month earlier in the year.

The global mean seasonal fossil fuel cycle is a full 6 months out of phase, and has an amplitude of

roughly 15% of that of the terrestrial cycle. Fig. 17 shows how the mean seasonal cycle of both fluxes differ

between the hemispheres. The opposite seasonal cycle of terrestrial flux between hemispheres is evident, as

is the difference in amplitude. In the Southern Hemisphere, seasonal cycles of both terrestrial fluxes and

fossil fuel emissions are much lower (for example, the terrestrial flux for the ff model has a peak-to-peak

of 42.72GtCyr−1 in the Northern Hemisphere, but only 10.062GtCyr−1 in the Southern Hemisphere). The

addition of seasonally varying fossil fuel emissions has increased the amplitude of the seasonality in terrestrial

fluxes in both hemispheres.

Regional Fluxes Regionally, Europe and Russia are the combined highest emitters of CO2 per annum on

average, contributing just under 35%. Regions 3 and 5 only contribute a small amount to total fossil fuel

emissions (< 6.5%). Region 2 (North-Mid Africa, the Middle-East and Central and Southern Asia) has the
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Figure 14: Predicted total CO2 fossil fuel emissions for each region (full line) after calibration (
P

i,j F r
i,j,m). Dashed

lines represent simulated total emissions with Sr = xp±σ, representing one standard deviation in the spread in
seasonality dictated by the uncertainty in Sr (σp) of the model output. Regions 1 (top) to 5 (bottom) are displayed.
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Figure 15: Left: Mean annual CO2 flux from terrestrial biosphere, fossil fuel emissions and background fluxes for hv
(blue) and ff (red) model calibrations (averaged over calibration period). Right: Mean annual CO2 flux from each
region (averaged over calibration period). Error bars indicate 1σ standard deviation of distribution.

Figure 16: Mean monthly terrestrial flux (left) and fossil fuel emissions (right) in hv (blue) and ff (red) model
calibrations, representing the average seasonal cycle of each. No running mean has been removed. Dotted lines
represent 1σ distribution around the mean.
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Figure 17: Mean monthly terrestrial and fossil fuel flux from hv (blue lines) and ff (red lines), totalled over the
Northern Hemisphere (left) and the Southern Hemisphere (right). Full lines indicate fossil fuel fluxes; dotted lines
denoting terrestrial fluxes. No distribution around the mean is shown, however is estimated to be similar in magnitude
to those shown in Fig. 16.

largest standard deviation indicating the largest change in emitted CO2 over the model calibration period.

Regional mean annual fossil fuel fluxes, and their standard deviations and detailed in Appendix E.1, in which

all values are shown to be comparable to the original emissions data set.

6.3.2 Spatial Distribution

Mean Seasonal Differences Spatially distributed, the largest increase in mean monthly CO2 emissions

occurs on the Western coast of the United States, with an increase of 0.23GtCyr−1 in February, followed

closely by Central Europe. The largest decrease occurs in July on the Eastern coast of the United States

(-0.39GtCyr−1) with significant decreases also occurring in Japan. Interestingly, whereas in Europe and the

United States, emissions changes are likely due to the strongly reversed seasonality in these regions (they

are marked as increases in the Northern Hemisphere winter months, and decreases in the summer months),

the decrease in emissions in Japan is year-long (appears both in summer and winter months). This means

that the emissions for region 2 have been reallocated, possibly to Northern India, where a slight increase is

seen at both seasonal extremes (Fig. 18).

There is a high spatial correlation between densely populated areas and those areas with the largest

changes in emissions. The allocation of emissions per region (in the ff version) as opposed to by country

(hv), has been altered. For example, although Northern India is highly populated, previous representation

of emissions has not allocated so much CO2 per head as in Japan. This is an example of an introduced

uncertainty due to the population weighting scheme used in this study, which must be kept in mind.
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Figure 18: Spatial distribution of the difference between the mean monthly fossil fuel CO2 flux in the two model
versions (ff - hv), for two months with the largest difference in flux. Scale is in GtCyr−1. Top: 14.6 days into the
year (0.04 of a year) — Jan. Bottom: 197.1 days into the year (0.54 of a year) —Jul. Black circles represent positions
of observation stations. Those closest to the changes in flux are labelled.
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Figure 19: Spatial distribution of the difference between the mean monthly terrestrial CO2 flux in the two model
versions (ff - hv), for the month with the largest difference in flux. Scale is in GtCyr−1. Distribution represents 43.8
days into the year (0.12 of a year) — Feb. Black circles represent positions of observation stations. Those closest to
the changes in flux, and others of interest are labelled.
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Figure 20: Spatial distribution of the difference between the mean annual fossil fuel (top) and terrestrial biosphere
(bottom) CO2 flux in the two model versions (ff - hv). Scale is in GtCyr−1. Black circles represent positions of
observation stations.
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The terrestrial biosphere flux in two areas in the Southern Hemisphere are most affected by the intro-

duction of seasonal fossil fuel flux. Fig. 19 shows the largest increase in flux — 0.73GtCyr−1, is located in

central South-America. The most northerly tip of Madagascar appears to have the largest decrease in flux at

roughly -1.28GtCyr−1. Both of these largest changes occur for the month of February (Southern Hemisphere

summer).

Mean Annual Differences Fig. 20 shows the difference between the mean annual flux for both fossil

fuel emissions and terrestrial biosphere. Once seasonality is removed, it is found that the differences in flux

are not as significant as Figs. 18 and 19 suggest. The largest changes in annual fossil fuel flux are less than

±0.17GtC−1, and those in flux from the terrestrial biosphere well below ±0.5GtCyr−1.

6.4 Spatial Distribution of Fit to Data

Fig. 21 shows that for most stations, the fit to observations was improved due to the introduction of a seasonal

cycle into fossil fuel emissions. Both bar charts in Fig. 21 divide the stations into region (or geographically

closest region in some cases) — denoted by the colour of the bars. Then within each regional classification,

the stations are arranged so that those with lowest latitude are to the left, and those at higher latitudes are

to the right.

Firstly, it is clear from the top chart, that originally in the hv model, region 3 (Southern Africa, the

tip of South-East Asia and Oceania) was most poorly reconstructed, with negative R2 values indicative of a

cycle out of phase significantly. Even though the phase is not rectified in all cases in this region, it at least

approaches a better fit. This is indicated by large Γ values in the chart below.

The largest improvement in fit to observations seasonally are at Ascension Island (ASC), Easter Island

(EIC) and Amsterdam Island (AMS). ASC and EIC now have seasonal cycles close in phase and magnitude

to observations. These two stations are located to the East and West of South America respectively (ASC

is allocated to region 5, although strictly speaking is it roughly equidistant between the African West Coast

and the South American East Coast).

Most stations located in regions 1,2 and 3 already have good fit to data in the hv (apart from SMO

(located at Tutuila, American Samoa), whose seasonal cycle is significantly out of phase). Any marginal

increases or deceases in fit such as at the majority of stations in these regions are disregarded. The size of the

uncertainty on atmospheric concentrations and the distribution around the mean when averaging outweigh

the fitting accuracy.
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Figure 21: Top: R2 fit of hv (colour) and ff (grey) to observations of seasonal cycle (running mean removed
from atmospheric concentrations at observation stations). Bottom: Fit improvement, as calculated in Eq. 17 (see
Appendix D.3), of atmospheric CO2 concentration at various observation stations (expressed as a percentage of
convergence to perfect fit from fit in hv). In both cases, stations are arranged by region, and by latitude (in each
regional grouping left to right signifies low latitudes to high latitudes). Colours denote regions (see Fig. 28).
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Overall, most fit improvement is made at lower latitudes, with almost all stations which show a vast

improvement in fit located South of the equator (regions 3 and 5). Palmer Station, Antarctica (PSA) shows

relatively little improvement, although its fit was already vastly better than all other stations within the

region. It is important to note here that station distribution is not homogeneous. Therefore a rigourous

assessment of the spatial distribution of fit improvement is not possible. Graphical representation of the

atmospheric CO2 concentrations relative to observations at some of these stations (and others of interest)

may be found in Appendix E.2.

7 Discussion

The fit of the ff model output to observational data is encouraging. Overall, the tendency for CCDAS to

reconstruct intra-annual CO2 variability poorly (relative to inter-annual trends) has been improved upon

through the addition of seasonality in fossil fuel emissions, in agreement with suggestions from Levin (2003)

[35]. Inter-annual trends are also, in general, improved upon, although fit to observations in this case was

already very good in most areas of the globe [52, 48, 53]. Most improvement has been made in the Southern

Hemisphere where previously (in the hv) reconstruction of atmospheric CO2 concentrations was poorest.

Furthermore, stations cited as having very poor fit to observations by Rayner (2005) — Easter Island (EIC)

and Ascension Island (ASC) — display some of the highest improvements in fit due to the addition of a

seasonal fossil fuel emission cycle (58% and 64% respectively).

Results also suggest that at the Baltic Sea (BAL) and the Tae-Ahn Peninsula (TAP) stations, poor

fitting to observations is more likely to be due to the magnitude of the inter-annual flux, not seasonality

as previously suggested [48]. The mean annual fossil fuel emissions around TAP have decreased in the ff

model, and those near BAL have increased. This explains the slight increase in the overall fit relative to the

running mean at BAL (R2 has increased from 0.53 to 0.60), and a slight decrease in fit at TAP (R2 = 0.60

in hv, compared to 0.43 in ff).

Despite these initially promising results, analysis of the seasonality parameters for the fossil fuel emissions

reveals highly unlikely and uncertain predicted seasonal cycles for emissions. Whilst the mean annual

emissions are still comparable to those originally provided in the data set (see Table E.1 in Appendix B for

comparison), the magnitude of the seasonality in most regions is much greater than suggested by previous

studies and literature regarding seasonality in emissions [6, 35, 44, 51]. Although estimates on seasonal

amplitude of emissions are not available for all regions (values from the study by Rotty et al. (1987) have
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been shown to largely underestimate the seasonality of emissions [35]), it is possible to make a comparison

in some cases. For example, whereas Blasing (2005) cited a peak-to-peak of 0.035GtC in areas of North

America with a high in winter months, the estimate after calibration of the ff model is a peak-to-peak of

almost 3GtC for this region of opposite seasonal cycle (high in summer). Even including uncertainties on

this value, it is highly improbable that the model’s seasonal cycle will diminish almost 100-fold and reverse

the phase of the cycle. This region compares most poorly to previous attempts to quantify the amplitude of

the seasonal cycle.

Other regions do not exhibit much more realistic behaviour. The seasonal cycle over Europe and Russia

also displays a high in summer months (see Fig. 14), despite having its’ population distributed at higher

latitudes (mean annual temperatures are lower than in region 4) making it more likely to have a traditional

cycle following energy demand through heating [35]. Another important point to note is that emissions

within the calibrated ff model drop near zero for three of the regions (3, 4, and 5) at the middle of the year.

For the Southern regions (3 and 5), this is not so anomalous with our knowledge regarding the regions. They

are low emitting in general, accounting for just over 6% of global emissions together, and during summer

months (beginning/end of the year), their consumption is likely to be reduced. However, for North America

this is an unimaginable result. In some areas of North America (due to the latitudinally dependent nature

of the seasonality term in emissions), the model predicts a negative fossil fuel emission. This is entirely

unphysical.

Region 2 is the most likely candidate for realistic seasonality, with a peak-to-peak ranging between

∼0.1 and 0.25GtC relative to an average annual emission of 1.75±0.49GtCyr−1. Even this however is

most probably too strong a seasonal cycle, although no studies have been found with details relating to the

seasonality in emissions in this region an so no quantitative comparison may be made. Qualitatively, since this

is a low-latitude region (with population density at its highest between 20 and 30◦N — see Appendix E.3),

it is expected that it would exhibit low seasonality in emissions correlated to low seasonality in climate.

Furthermore, within this region, some of the least predictable emitters are found. Relating to the socio-

economic analysis of emissions, both India and China are transition countries, meaning that their emissions

have been increasing rapidly for much less time that other established high-emitting countries [41, 13, 14].

Therefore any trends in emissions now are unlikely to have been evident throughout the calibration period.

This highlights one of the main problems within the fossil fuel emissions model. One seasonal trend

must represent the whole calibration period - there is no possibility for phase transformation or seasonal

cycle reversal within a region in the given time period. Since some studies suggest cycles are changing,
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then this possibility should be encompassed in the seasonality term in emissions [6]. One other important

result of the manner in which seasonality is constructed by Eq. 14 is the latitudinal dependance. Since the

model presumes a high in winter months (for both hemispheres), it increases the seasonality towards higher

latitudes. However, if the seasonality is reversed (is likely driven by the use of air conditioning) in hotter

climes, then this latitudinal dependence should be reversed somewhat — hotter and longer summers towards

the equator are likely to constitute more energy consumption [44]. This, of course, must be balanced with

less seasonal climates closer to the equator, but may be true of tropical/sub-tropical latitudes. This is simply

not available to the calibration of the model.

The most significant improvement in reproduction of seasonal cycles is seen in the Southern hemisphere.

This is likely attributed to changes in the reaction of the terrestrial biosphere to the calibration process.

It is evident from Figs. 19, 20 and 17 that areas in the Southern Hemisphere have altered the magnitude

of the terrestrial flux fairly significantly. The introduction of seasonality in the low fossil fuel emissions in

region 5 has prompted reduction in terrestrial flux throughout the year over the same area. It is possible

that because the majority of background flux due to land use change is located in this area then this is

indicative of an overestimation in the magnitude of this contribution [52]. Also possible is that previously

(in the hv model), higher mean annual terrestrial biosphere flux may have been substituting for a lacking in

intra-annual variability in order to attempt a better likeness to observations. This suggestion is supported

by Fig. 17 where seasonality in terrestrial biosphere flux is increased. Since the seasonality in the Southern

Hemisphere is dominated by oceanic uptake of CO2 (more ocean-covered area) [31], then perhaps it is the

intra-annual variability this background flux which is underestimated. This may also be the case for region

3, where the seasonal cycle is stronger then expected.

In the Northern Hemisphere, as has already been mentioned, the seasonality in emissions is overestimated

significantly by the calibration. This is most likely in part due to the increase in the mean seasonal cycle of

terrestrial biosphere flux as shown in Fig. 17 since the Northern Hemisphere’s seasonal cycle in atmospheric

CO2 concentrations is dominated by the terrestrial biosphere (large land masses are located here) [31]. The

seasonal trend in emissions is on average, 6 months out of phase with those from the terrestrial biosphere.

These two changes almost entirely cancel each other out, resulting in little or no improvement in fit to

observations in these areas (see Fig. 21). Whereas the resulting change in terrestrial flux is minimal seasonally

(because the amplitude is already high), this translates to a huge seasonal cycle in emissions. Rather than

’filling the gap’ between seasonality introduced in atmospheric CO2 concentrations by terrestrial flux and

that in observations, the calibration has made the seasonality in fossil fuel emissions work counteractively
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to an increased seasonality in terrestrial flux.

The most likely reason for this lies in the calibration and its dependence on initial parameters. First of all,

since the fossil fuel flux is fed directly into the transport model (TM2), atmospheric CO2 concentrations are

very sensitive to this flux. In turn therefore, the model’s data assimilation is very sensitive to the parameters

associated with the fossil fuel emissions, and predicted values show high dependence on initial values. Better

estimates are possibly needed before the model will predict realistic emissions scenarios. Inability to reduce

the uncertainty on the Sr parameters is also of concern. The uncertainties associated with this seasonal

cycle will in turn have a large effect on the uncertainties attached to overall seasonality of atmospheric CO2

concentrations at points around the globe. This is likely to be especially so in the case where the uncertainty

on Sr encompasses a reversed seasonal cycle. Since Sr is a multiplicative factor on the seasonal cycle, the

larger the emissions of a region or area, the greater the effect of the uncertainty.

8 Conclusion

On replacement of a seasonally invariant background flux of fossil fuel emissions with a basic sinusoidal

seasonal cycle, there is an overall improvement in fit to observational data — a reduced χ-squared of 1.73

(relative to 2.23 with the background fossil fuel emissions), suggesting that the inclusion of a seasonal cycle

in emissions is important.

On calibration of the 62 tuneable parameters in the system, the largest change between the two model

versions (with and without seasonal variation on CO2 emissions) is shown in parameters associated with

GPP in the terrestrial biosphere model. This transpires as an increased seasonal cycle of the terrestrial

biosphere fluxes in both Northern and Southern Hemispheres.

The predicted values of the five regional parameter representing intra-annual variations in CO2 emissions

result in highly unrealistic seasonal cycles for most regions — very large amplitudes (often near 100% of the

base level emissions), and with only one region in the Northern Hemisphere (Mid-North Africa, the Middle-

East and Central and Southern Asia) exhibiting the expected phase (high emissions in winter months, low

in summer).

In the worst case (North and Central America), the amplitude of seasonality is predicted to be near

100 × that suggested in other studies, and peaks during the summer months as opposed to winter [6].

Prediction that the anthropogenic CO2 emissions for three of the five regions near zero in winter months is

equally unrealistic. In Northern Hemispheric regions, this is largely attributed to counteracting an opposite
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and vastly increased seasonal cycle in terrestrial flux. In the Southern Hemisphere, an under-estimated

seasonality, or a phase lag in the oceanic background flux is thought to be the main influence.

The most useful knowledge gained though this study is that the seasonal function is over-simplistic. It

does not take into account any temporal changes in phase of the seasonality, or encompass any differing

elements of seasonal energy use (for example emissions due to energy use through heating versus through air

conditioning). Furthermore, the amplitude of the seasonality is relative to the magnitude of the emissions

which, according to some studies is not representative of inter-annual trends. For countries whose emissions

are increasing, often the seasonal cycle is decreasing. Another important omission within the seasonality

function is that if the seasonal cycle is reversed, the amplitude still increases with increasing latitude. This

is highly unrealistic.

It is proposed that a more complex algorithm is used to describe seasonality. At least two sinusoidal terms

are deemed necessary to make predictions more realistic — one representing emissions produced from energy

use through heating with a maximum in winter months, and a latitudinal dependence similar to that used

in this study; and one representing a cycle 6 months out of phase (with a maximum in the summer months),

encompassing emissions driven by what is thought to be air conditioning usage. This term should have

different or no latitudinal dependence. It is possible that a third term is necessary to encompass electricity

usage in winter through a rise in indoor activities during colder periods with fewer hours of sunlight. These

terms will obviously be much more applicable in certain regions, creating a semi-annual cycle of fossil fuel

emissions. The superposition of the two cycles will also provide more freedom with respect to the phase

of the seasonal cycle of emissions, hopefully improving the phase lag in atmospheric concentrations seen

in some areas. It also removes the need for further division of regions since within this formulation, the

differing latitudinally varying terms should allow for variation in seasonal cycle within a region. This should

aid keeping the number of additional parameters to a minimum.

For this deconstruction, the annual fossil fuel emissions data set will need to be separated into two portions

— one containing fuel types commonly used for electricity production, and the other for heat production.

If possible a further third group should be pre-subtracted to represent emissions that are unlikely to have

a seasonal dependence, for example, transport-related emissions. This more complex deconstruction may

require the re-assessment of regional divisions, dependant on available data, and fuel type usage for heating

and electricity production.

Finally, more research is required to make assumptions for the initial parameters that are entered into

CCDAS. Since the calibration is very sensitive to these values, where possible more realistic and accurate
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estimates should be made. Uncertainty relating to the estimates is currently high, meaning predictions are

poorly constrained. Research detailing seasonality in emissions for some regions is beginning to emerge from

process-based models. Although these generally relate to more developed regions of the globe (studies relating

to the United States and Europe have been detailed here), it is possible that better estimates in these areas

alone may be sufficient to better constrain the seasonality elsewhere due to their percentage contribution to

global emissions. Finally, It is recommended that limits be imposed on the tuneable parameters so that the

predicted seasonality is not compensating for other seasonal fluxes.
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APPENDIX

A Observation Stations

Table 3: 41 stations and their geographical co-ordinates, from the GLOBALVIEW CO2 network used in this study
[16]. Station codes are used for ease of reference. Region is classified as the geographically closest region if th station
is not positioned directly within a regional boundary.

Station Code Station Latitude Longitude
ALT Alert, Nunavut, Canada 82.45 -62.52
AMS Amsterdam Island, France -37.95 77.53
ASC Ascension Island, U.K. -7.92 -14.42
AVI St. Croix, Virgin Islands, U.S.A. 17.75 -64.75
AZR Terceira Island, Azores, Portugal 38.77 -27.38
BAL Baltic Sea, Poland 55.35 17.22
BME St. David’s Head, Bermuda, U.K. 32.37 -64.65
BMW Southhampton, Bermuda, U.K 32.27 -64.88
BRW Barrow, Alaska, U.S.A. 71.32 -156.6
CBA Cold Bay, Alaska, U.S.A. 55.2 -162.72
CGO Cape Grim, Tasmania, Australia -40.68 144.68
CHR Christmas Island, Kiribati 1.7 -157.17
CMO Cape Meares, Oregon, U.S.A. 45.48 -123.97
CRZ Crozet, Indian Ocean, France -46.45 51.85
EIC Easter Island, Chile -27.15 -109.45
GMI Guam, Mariana Islands, U.S.A. 13.43 144.78
HBA Halley Bay, Antarctica, U.K. -75.58 -26.5
ICE Storhofdi, Heimaey, Vestmannaeyjar, Iceland 63.34 -20.29
IZO Tenerife, Canary Islands, Spain 28.3 -16.48
KEY Key Biscayne, Florida, U.S.A. 25.67 -80.2
KUM Cape Kumukahi, Hawaii, U.S.A. 19.52 -154.82
MBC Mould Bay, Nunavut, Canada 76.25 -119.35
MHD Mace Head, County Galway, Ireland 53.33 -9.9
MID Sand Island, Midway, U.S.A. 28.21 -177.38
MLO Mauna Loa, Hawaii, U.S.A. 19.53 -155.58
NWR Niwot Ridge, Colorado, U.S.A. 40.05 -105.58
OPW Olympic Peninsula, Washington, U.S.A. 48.25 -124.42
PSA Palmer Station, Antarctica, U.S.A. -64.92 -64
RPB Ragged Point, St. Phillip’s Parish, Barbados 13.17 -59.43
SEY Mahe Island, Seychelles -4.67 55.17
SHM Shemya Island, Alaska, U.S.A. 52.72 174.1
SMO Tutuila, American Samoa, U.S.A. -14.24 -170.57
SPO South Pole, Antarctica, U.S.A. -89.98 -24.8
STM Atlantic Ocean (Polarfront), Norway 66 2
SYO Syowa Station, Antarctica, Japan -69 39.58
TAP Tae-Ahn Peninsula, Korea 36.73 126.13
UTA Wendover, Utah, U.S.A. 39.9 -113.72
UUM Ulaan Uul, Mongolia 44.45 111.1
WIS Sede Boker (Negev Desert), Israel 31.13 34.88
WLG Mt. Waliguan Baseline Observatory, Peoples Republic of China 36.29 100.9
ZEP Zeppelin Station, Ny-Alesund, Svalbard, (Spitsbergen), Norway 78.9 11.88

B Regional Division of Countries
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Table 4: List of countries from CDIAC emissions data set [38], divided into regions. Some countries, whilst
geographically covering the same area have different names historically. All variations are included as they appear in
the data set. The top 20 emitters are denoted by *.

Region 1 Region 2 Region 3 Region 4 Region 5
Albania Afghanistan American Samoa Anguilla Argentina
Andorra Algeria Angola Antigua and Barbuda Bolivia
Austria Armenia Australia * Aruba Brazil *
Belarus Azerbaijan Botswana Bahamas Chile
Belgium Bahrain Brunei Darussalam Barbados Ecuador
Bosnia Herzegovina Bangladesh Burundi Belize Falkland Islands (Malv-

inas)
Bulgaria Benin Comoros Bermuda French Polynesia
Croatia Bhutan Congo British Virgin Islands Paraguay
Cyprus Burkina Faso Congo, Democratic Re-

public
Canada * Peru

Czech Republic Cote d’Ivoire Cook Islands Cayman Islands Pitcairn
Denmark Cambodia East Timor Colombia Uruguay
Estonia Cameroon Fiji Costa Rica
Faeroe Islands Cape Verde Gabon Cuba
Finland Central African Republic Indonesia * Dominica
France * Chad Kiribati Dominican Republic
Germany * China * Lesotho El Salvador
Gibraltar Djibouti Madagascar French Guiana
Greece Egypt Malawi Greenland
Holy See Equatorial Guinea Mauritius Grenada
Hungary Eritrea Mozambique Guadeloupe
Iceland Ethiopia Namibia Guatemala
Ireland Federated States of Mi-

cronesia
New Caledonia Guyana

Italy * Gambia New Zealand Haiti
Latvia Georgia Niue Honduras
Liechtenstein Ghana Papua New Guinea Jamaica
Lithuania Guam Reunion Martinique
Luxembourg Guinea Rwanda Mexico *
Malta Guinea-Bissau Samoa Montserrat
Monaco Hong Kong SAR (China) Seychelles Nicaragua
Netherlands India * Solomon Islands Northern Mariana Islands
Netherlands Antilles Iran (Islamic Republic of)

*
South Africa * Panama

Norway Iraq St. Helena Puerto Rico
Poland Israel Swaziland Saint Kitts and Nevis
Portugal Japan * Tonga Saint Lucia
Republic of Moldova Jordan Tuvalu St. Pierre and Miquelon
Romania Kazakstan United Rep. of Tanzania St. Vincent and the

Grenadines
Russian Federation * Kenya Vanuatu Suriname
San Marino Korea, Dem. People’s Rep.

of
Wallis and Futuna Islands Trinidad and Tobago

Slovakia Korea, Republic of * Zambia Turks and Caicos Islands
Slovenia Kuwait Zimbabwe United States of America *
Spain * Kyrgyzstan United States Virgin Is-

lands
Svalbard (Norway) Lao People’s Dem. Rep. Venezuela
Sweden Lebanon
Switzerland Liberia
The former Yugoslav Rep.
of Macedonia

Libyan Arab Jamahiriya

Ukraine * Macau
United Kingdom * Malaysia
Yugoslavia Maldives

Mali
Marshall Islands
Mauritania
Mongolia
Morocco
Myanmar
Nauru
Nepal
Neutral zone (IRQ and
SAU)
Niger
Nigeria
Oman
Pakistan
Palau
Palestinian National Au-
thority
Philippines
Qatar
Sao Tome and Principe
Saudi Arabia *
Senegal
Sierra Leone
Singapore
Somalia
Sri Lanka
Sudan
Syrian Arab Republic
Tajikistan
Thailand
Togo
Tunisia
Turkey
Turkmenistan
Uganda
United Arab Emirates
Uzbekistan
Vietnam
Western Sahara
Yemen
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C Population Fraction Distribution
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Figure 22: Population fraction (W r
i,j) spatial distribution for all regions 1 to 5 (top - bottom)) on ∼8◦×10◦ (TM2)

resolution. Darker areas indicate low population fraction of the region, whereas those lighter in tone are indicative
of highly populated areas.
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D Fit Statistics

D.1 Deconstruction of Atmospheric CO2 Concentrations

Within atmospheric CO2 concentration time series (either model output, or from observational data —

M(xp) and d respectively), there are two main components — an inter-annual trend and a seasonal cycle.

In order to estimate the changes in both of these due to the addition of seasonal fossil fuel emissions, the two

are separated. A running mean from the concentration data is calculated over 24 months (or occasionally

48 if the seasonality is very strong) and removed. The mean seasonal cycle is then calculated from what

remains. Comparison may then be made between both models’ relative fit to the observations. Fig. 23 shows

an example of this deconstruction technique.

Figure 23: From top-left to bottom-right: Atmospheric CO2 concentration data from observations (black), and
model output (hv in blue, ff in red); Running mean; Seasonality left after removal of running mean; Average annual
seasonal cycle with dotted lines indicating one standard distribution (1σ) from the mean observational seasonal cycle.
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D.2 R2 Statistic

Two methods of fit estimation are used, both implementing the R2 technique as in Eq. 16.

R2 = 1−
∑

m(dm − d̄)2∑
m(dm −M(xp)m)2

(16)

For the first, an estimate of the fit to the whole time series of observations is made relative to the

running mean of the observations. In this case, d̄ is the running mean, m denotes a sum over all months

in the calibration period (those remaining after calculation of the running mean), d is the observational

data (atmospheric CO2 concentration), M(xp) is the model output of atmospheric CO2 concentration after

calibration (both in ppm).

In the second case, fit of the mean seasonal cycle is made. d̄ is the mean annual atmospheric CO2

concentration over the whole calibration period, m denotes a sum over all months in the year, d is the mean

seasonal cycle of the observational data (atmospheric CO2 concentration, with the running mean removed),

M(xp) is the mean monthly model output of atmospheric concentration after calibration (both in ppm).

If the fit is good, the R2 value should be near 1. If the R2 value is negative, there is a significant lag in

the seasonal cycle of the model output relative to observations. A higher negative value suggests a phase

shift in the seasonal cycle away from that in observations, but any improvement towards a positive value (or

change to a positive value) indicates a phase shifting towards that in observations.

D.3 % Improvement in Fit

Any improvement in the fit of the mean seasonal cycle is quantified by a percentage increase from the fit

from the hv output towards 1 (a perfect fit), as in Eq. 17, where R2
hv and R2

ff are the R2 fits for the hv

and ff model output respectively.

Γ =
(1−R2

hv,s)− (1−R2
ff,s)

1 + |R2
hv,s|

× 100 (17)

Any small value for Γ is likely to be encompassed in the uncertainties in the model output (M(xp)), and

the distribution around the mean, and so is disregarded.
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E Additional Results

E.1 Regional Flux

Table 5: Mean annual fossil fuel CO2 flux per region (and uncertainty representing one standard deviation from the
mean) as output from ff model, and from CDIAC data set [38]. Percentage contribution of each region to the total
emissions of the model output.

Region Flux (GtCyr−1) % of total emissions CDIAC flux (GtCyr−1

1 1.9848 ± 0.2541 34.73 1.9834 ± 0.26
2 1.7503 ± 0.4855 30.63 1.7525 ± 0.49
3 0.2364 ± 0.0544 4.14 0.2368 ± 0.05
4 1.6265 ± 0.1587 28.46 1.6279 ± 0.16
5 0.1166 ± 0.0203 2.04 0.1169 ± 0.02

E.2 Fit to Data

Figure 24: Station = ASC (Ascension Island). Black = observational data, blue = hv model output, red = ff
model output. Left: monthly atmospheric CO2 concentration, over model calibration period. Right: running mean
(inter-annual trend) removed, and mean seasonal cycle constructed over the central 19 years of calibration. Dashed
lines signify 1σ of distribution either side of the mean.
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Figure 25: Station = EIC (Easter Island). Black = observational data, blue = hv model output, red = ff model
output. Left: monthly atmospheric CO2 concentration, over model calibration period. Right: running mean (inter-
annual trend) removed, and mean seasonal cycle constructed over the central 19 years of calibration. Dashed lines
signify 1σ of distribution either side of the mean.

Figure 26: Station = SMO (Tutuila, American Samoa). Black = observational data, blue = hv model output, red
= ff model output. Left: monthly atmospheric CO2 concentration, over model calibration period. Right: running
mean (inter-annual trend) removed, and mean seasonal cycle constructed over the central 19 years of calibration.
Dashed lines signify 1σ of distribution either side of the mean.
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Figure 27: Station = PSA (Palmer Station, Antarctica). Black = observational data, blue = hv model output, red
= ff model output. Left: monthly atmospheric CO2 concentration, over model calibration period. Right: running
mean (inter-annual trend) removed, and mean seasonal cycle constructed over the central 19 years of calibration.
Dashed lines signify 1σ of distribution either side of the mean.

E.3 Seasonality and Population Weighting
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Figure 28: Contour plots of latitudinal and monthly function dependence of seasonality (F r
i,j,m) and corresponding

latitudinal distribution of population fraction (
P

j W r
i,j ) for regions 1 to 5 (top to bottom). Dotted lines represents

the latitudinal value taken to be most influential to the seasonal cycle of that region (i.e. the overall seasonal cycle
will be weighted with regards to the latitudinal distribution of the population fraction).
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