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Summary. The NASA finite-volume General Circulation Model (fvGCM) is a
three-dimensional Navier-Stokes solver that is being used for quasi-operational
weather forecasting at NASA/GMAO. By means of the automatic differentiation
tool TAF, efficient tangent linear and adjoint versions are generated from the
Fortran-90 source code of fvGCM’s dynamical core. fvGCM’s parallelisation
capabilities based on OpenMP and MPI have been transferred to the tangent
linear and adjoint codes. For OpenMP, TAF automatically inserts corresponding
OpenMP directives in the derivative code. For MPI, TAF generates interfaces to
hand-written tangent linear and adjoint wrapper routines. TAF also generates a
scheme that allows the tangent linear and adjoint models to linearise around an
external trajectory of the model state. The generation procedure is set up in an
automated way, allowing quick updates of the derivative codes after modifications
of fvGCM.
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1 Introduction

Many applications in dynamic meteorology rely on derivative information.
Talagrand [28] and Errico [9] describe the use of tangent linear (TLM) and
adjoint (ADM) models for sensitivity analysis, stability (singular vector) anal-
ysis, variational data assimilation, and observation targeting. The use of sec-
ond order derivative information for sensitivity analysis in the presence of
observations, uncertainty analysis, and (Hessian) singular vector analysis is
reviewed by Le Dimet et. al. [18].
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Despite recent progress in Automatic Differentiation (AD) and first suc-
cessful applications of AD-tools in the support of TLM and ADM coding
[2, 8, 7, 24, 30, 31, 32], hand-coding of TLMs and ADMs is still common
in dynamic meteorology. This is in contrast to oceanography, where fully
automated generation of TLMs and ADMs of GCMs is becoming standard
[12, 17, 23, 27, 29]. The purpose of the present study is to demonstrate the
(after initial code preparations) automated generation of the TLM and ADM
of a state of the art GCM by means of an AD tool.

The remainder of the present paper is organised as follows. The next sec-
tion introduces the GCM, followed by a section describing the TLM and ADM
generation. Sections 4 and 5 each address a particular challenge in the AD pro-
cess: preserving the GCM’s parallelisation capabilities and linearising around
an externally provided trajectory. Section 6 discusses the TLM and ADM per-
formance, and section 7 shows an application example. Conclusions are drawn
in the final section.

2 Finite-volume General Circulation Model

The NASA finite-volume General Circulation Model (fvGCM) [20, 21, 22] is
a three-dimensional Navier-Stokes solver. The GCM has been developed at
NASA’s Data Assimilation Office (DAO, now Global Modeling and Assimila-
tion Office, GMAO) for quasi-operational weather forecasting. The model has
various configurations. For the current study, we use two resolutions: the b55
production configuration, which runs on a regular horizontal grid of about 2 by
2.5 degree resolution (144 × 91 grid cells) and 55 vertical layers as well as the
coarse a18 development configuration, with roughly 4 by 5 degree horizontal
resolution (72 × 46 grid cells) and 18 vertical layers.

The time step is 30 minutes, and typical integration periods vary between
6 and 48 hours depending on applications. The state of the model comprises
three-dimensional fields of 5 prognostic variables, namely two horizontal wind
components, pressure difference, potential temperature, and moisture.

3 Applying TAF to fvGCM

For GMAO’s retrospective Data Assimilation System (GEOS-DAS, [31]),
TLM and ADM versions of fvGCM’s dynamical core are needed. Both the
TLM and the ADM refer to the Jacobian of the mapping of the initial state
onto the final state. While the TLM evaluates the product of the Jacobian
times a vector of initial state perturbations in forward mode, the ADM eval-
uates the product of a (transposed) final state perturbation vector with the
Jacobian in reverse mode. Further applications at GMAO such as sensitivity
analysis, stability (singular vector) analysis, or chemical data assimilation also
require TLMs and ADMs.
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Transformation of Algorithms in Fortran (TAF) [13, 14] is a source-to-
source transformation AD tool for programs written in Fortran 77-95, i.e. TAF
generates a TLM or ADM from the source code of a given model. As the above
applications differ in their sets of dependent and independent variables, TAF
generates a TLM/ADM pair for each of the applications and in addition two
pairs for finite difference tests (rough and detailed). fvGCM is implemented in
Fortran 90 and contains about 87000 lines of source code excluding comments.
It makes use of Fortran-90 features such as free source form, modules, derived
types and allocatable arrays.

Our standard approach to render a given code TAF-compliant consists
of combining modifications to the model code with TAF enhancements. For
instance, at two places fvGCM’s control flow structure has been simplified.
Generation of an efficient store/read scheme for providing required values [13]
(often denoted by trajectory) has been triggered by 41 TAF init directives
and 75 TAF store directives. The ADM can be generated with and without
a checkpointing scheme [14]. To support TAF’s data dependence analysis, 11
TAF loop directives have been used to mark parallel loops. In total 204 TAF
flow directives have been inserted to trigger generation of specified calling
sequences [14]. For instance, TAF flow directives allow one to use the Fast
Fourier Transformation (FFT) and its inverse in the TLM and ADM, respec-
tively, which is more efficient than using a generated FFT derivative code
[4, 14, 28]. In some subroutines, variables were allocated and/or initialised
during the first call. This introduces a data flow dependence between the first
and later calls which forces TAF to generate proper but inefficient recompu-
tations. In order to avoid these recomputations we have moved the allocations
and initialisations into extra module procedures which are not differentiated.

As a result of these initial modifications, the generation procedure for the
derivative code is now fully automated. This is important to allow quick up-
dates of the derivative code to future changes in the underlying model code.
After each code change, the updated TLM and ADM have to be verified.
Depending on the nature and the extent of the change, additional modifi-
cations may be necessary to keep the generated derivative code correct and
efficient. Unfortunately there is a bug in the SGI-compiler (version 7.4.0) on
the production machine (Origin 2000) which requires switching off the com-
piler optimisation for two files and reducing the optimisation level (-O2 instead
of -O3) for six more files in the ADM. It turns out that the wrong compiler
optimisation causes an inaccuracy of only a few percent, which is acceptable
for many applications.

4 Parallelisation

Regarding parallelisation, fvGCM can run on both shared and distributed
memory architectures. On shared memory machines the model parallelises
over vertical levels using OpenMP [25, 26] directives, and on distributed mem-
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ory machines it parallelises over latitude bands using calls to the MPI library
(MPI-1 [15] or MPI-2). There are even architectures that allow one to combine
OpenMP and MPI, e.g. the so-called non-uniform memory access (NUMA)
systems. Our production machine, an SGI Origin 2000, belongs to this class.

The challenge for AD consists in transferring these parallelisation capabil-
ities to the TLM and ADM. This task is not to be confused with AD appli-
cations based on sequential function codes, where parallelisation is restricted
to the derivative code (see, e.g., [1, 3]).

For OpenMP, the model arranges all its parallelisation by repeated use
of the parallel do directive. Analysis of such parallel loops is discussed
in [13, 16]. The loop analyses in TAF have been extended to evaluate the
parallel do directive. For each parallelised loop of the model, i.e. each loop
furnished with an OpenMP directive, TAF can automatically generate the
proper parallelisable TLM and ADM versions, including their OpenMP direc-
tives. By specifying either -omp or -omp2 as command line options, the user
selects the OpenMP standard to which the generated code conforms. Without
either command line option, the code generation ignores OpenMP directives
in the model code altogether, i.e. TAF produces sequential code.

For MPI-communication, rather than including calls to the library routines
directly into the main code of the GCM, there is an additional layer of routines
in between. These wrapper routines are called from the main code of the
model and arrange all MPI-communication internally. All wrappers plus a few
utility routines form a Fortran-90 module (named mod comm). As an example,
File 1 shows the MPI-1 version of a wrapper routine that exchanges a three-
dimensional field across boundaries of latitude bands. It does all the necessary
bookkeeping for indices, and the packing of the relevant section of the field q
using the utility routine BufferPack3d, which is also part of mod comm.

For a subset of MPI-1, Faure and Dutto [10, 11] address handling in for-
ward and reverse mode AD, respectively. Carle and Fagan [6] as well as Bischof
and Hovland [5] address handling of MPI-1 in forward mode AD. In forward
mode, TAF handles most relevant MPI calls. Among the MPI library routines
used by fvGCM, the only one missing is MPI Allreduce with MPI MAX as
reduction operation. As MPI versions of both the TLM and ADM are needed,
we chose to handle MPI via a different approach (see also [27]): Adjoints of
all wrappers have been hand-coded. In the TLM, most of the model wrappers
can be reused; only a single TLM wrapper had to be hand-coded. As the
actual MPI library calls are carried out within the wrappers, this approach
is working independently of the MPI standard (MPI-1 or MPI-2). The ADM
version of the wrapper in File 1 is shown in File 2.

Inclusion of the proper calling sequences for TLM and ADM versions of
the wrappers into the generated TLM and ADM is triggered by TAF flow
directives. Specifying TAF flow directives for a routine makes TAF analyses
ignore the code of the routine and instead use the information provided by
the directives. The flow directives for the wrapper in File 1 are shown in
File 3. The first word, !$taf, is a keyword indicating a directive to TAF. The
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subroutine mp_send3d_ns(im, jm, jfirst, jlast, kfirst, klast, &
ng_s, ng_n, q, iq)

implicit none
integer im, jm
integer jfirst, jlast
integer kfirst, klast
integer ng_s ! southern zones to ghost
integer ng_n ! noruthern zones to ghost
real q(im,jfirst-ng_s:jlast+ng_n,kfirst:klast)
integer iq

! Local:
integer i,j,k
integer src, dest
integer qsize
integer recv_tag, send_tag
ncall_s = ncall_s + 1

! Send to south
if ( jfirst > 1 ) then

src = gid - 1
recv_tag = src
qsize = im*ng_s*(klast-kfirst+1)
nrecv = nrecv + 1
tdisp = igonorth*idimsize + (ncall_s-1)*idimsize*nbuf
call mpi_irecv(buff_r(tdisp+1), qsize, MPI_DOUBLE_PRECISION, src, &

recv_tag, commglobal, rqest(nrecv), ierror)
dest = gid - 1
qsize = im*ng_n*(klast-kfirst+1)
tdisp = igosouth*idimsize + (ncall_s-1)*idimsize*nbuf
call BufferPack3d(q, 1, im, jfirst-ng_s, jlast+ng_n, kfirst, klast, &

1, im, jfirst, jfirst+ng_n-1, kfirst, klast, &
buff_s(tdisp+1))

send_tag = gid
nsend = nsend + 1
call mpi_isend(buff_s(tdisp+1), qsize, MPI_DOUBLE_PRECISION, dest, &

send_tag, commglobal, sqest(nsend), ierror)
endif

! Send to north
if ( jlast < jm ) then

...
endif
end subroutine mp_send3d_ns

File 1: Example of a wrapper routine for MPI-communication. To save space
the kernel of the lower if-then-endif construct (indicated by the dots) is
not displayed. It works analogously to the kernel of the upper if-then-endif
construct.

leading “!” makes the Fortran compiler ignore the directive. The next words,
module mod comm subroutine mp send3d ns, indicate the module and the
routine to which the flow directives refer. The first two directives indicate
the input and output arguments of the subroutine. The numbers refer to the
position of an argument in the argument list, i.e. arguments 1 to 10 (in fact all
arguments) are input, and none is output. For the current routine the output
directive may also be omitted as the empty set is the default for this type
of directives. The next two directives indicate active and required arguments
[13]. The next two directives indicate the names of the TLM and the ADM
versions of the routine. Since the name of the TLM version corresponds to
the name of the original routine, TAF recognises that the routine is linear.
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!=========================================================================
subroutine mp_send3d_ns_ad(im, jm, jfirst, jlast, kfirst, klast, &

ng_s, ng_n, q, iq)
!=========================================================================

implicit none
integer im, jm
integer jfirst, jlast
integer kfirst, klast
integer ng_s ! southern zones to ghost
integer ng_n ! noruthern zones to ghost
integer iq ! Counter
real q(im,jfirst-ng_s:jlast+ng_n,kfirst:klast)

! Local:
integer i,j,k
integer src
integer recv_tag
ncall_r = ncall_r + 1

! Recv from south
if ( jfirst > 1 ) then

nread = nread + 1
call mpi_wait(rqest(nread), Status, ierror)
tdisp = igonorth*idimsize + (ncall_r-1)*idimsize*nbuf
call BufferUnPack3dx(q, 1, im, jfirst-ng_s, jlast +ng_n , kfirst, klast, &

1, im, jfirst , jfirst+ng_n-1, kfirst, klast, &
buff_r(tdisp+1))

endif
! Recv from north

if ( jlast < jm ) then
...

endif
if (ncall_r == ncall_s) then

call mpi_waitall(nsend, sqest, Stats, ierror)
nrecv = 0
nread = 0
nsend = 0
ncall_s = 0
ncall_r = 0

endif
end subroutine mp_send3d_ns_ad

File 2: ADM version of the wrapper in File 1. Again the kernel of the second
if-then-endif block not displayed (indicated by the dots), to save space.

!*********************************************************************
! mp_send3d_ns
!*********************************************************************
!$taf module mod_comm subroutine mp_send3d_ns input = 1,2,3,4,5,6,7,8,9,10
!$taf module mod_comm subroutine mp_send3d_ns output =
!$taf module mod_comm subroutine mp_send3d_ns active = 9
!$taf module mod_comm subroutine mp_send3d_ns depend = 1,2,3,4,5,6,7,8 ,10
!$taf module mod_comm subroutine mp_send3d_ns adname = mod_comm::mp_send3d_ns_ad
!$taf module mod_comm subroutine mp_send3d_ns ftlname = mod_comm::mp_send3d_ns
!$taf module mod_comm subroutine mp_send3d_ns common mp_3d_ns output = 1
!$taf module mod_comm subroutine mp_send3d_ns common mp_3d_ns active = 1

File 3: TAF flow directives triggering generation of calls to TLM and ADM
versions of File 1.

The last two directives refer to elements of the common block mp 3d ns, their
syntax is similar to that of the directives for the argument list.
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With the flow directives the generated TLM and ADM can be linked to
the hand-written wrappers. Hence, the generation procedure can be fully au-
tomated and produces four TLM/ADM versions, one for each of the combi-
nations OpenMP on/off and MPI on/off.

5 Linearising around an External Trajectory

In dynamic meteorology it is typical to run the TLM/ADM on a coarser reso-
lution than the forecast model. Also a set of processes called physics (e.g.
parametrisations of clouds and rain, surface drag, or vertical diffusion) is
usually not included in the derivative code. This reduces the computational
demand and avoids potential problems arising from numerical instability. To
compensate for this approximation, one linearises along an external trajectory
of the state computed by the complete high resolution model. Technically this
is achieved by making the (coarse grid) TLM/ADM integration periodically
read in a regridded version of the external state and overwrite the internal
state. However, to an AD tool, overwriting makes the final model state ap-
pear independent from the initial model state, as the data flow is interrupted.
Straightforward use of AD would result in an erroneous TLM/ADM. To solve
this problem, we exploit TAF’s flexibility in setting up a store/read scheme
for providing required variables. A combination of TAF init, store, and flow
directives essentially hides the overwriting from TAF analyses and includes
proper calls to the routines that provide the external trajectory. The resulting
trajectory versions of the TLM and ADM are no longer proper linearisations
of the coarse resolution model, unless they are run with an external trajectory
provided by the model itself.

6 Performance of Generated Code

The performance of the sequential TLM and ADM versions has been tested
on a Linux PC (P4 3GHz Processor, 2 GByte memory, Intel Fortran Compiler
8.0) and on a SGI Origin 2000 (Compiler version 7.4.0). On the Linux PC we
could only run the coarser a18 configuration (see section 2), because of memory
limitations. On the SGI we have done separate tests for OpenMP-1 (8 threads)
and for MPI-1 (8 processors). We ran the ADM in both the inaccurate version
with full compiler optimisation and the accurate version with reduced compiler
optimisation. The integration period was six hours. We ran the configuration
without check-pointing and without reading an external trajectory, i.e. both
the TLM and ADM integration include a model integration. All required
variables were stored in memory.

The performance numbers are listed in Table 1. It is common to quantify
the CPU time of the derivative code in multiples of the CPU time of a function
evaluation (model integration). For the ADM performance, it is striking that
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Table 1. TLM and ADM run time in multiples of model run time.

Platform/Setup resolution TLM ADM ADM-noopt

Linux Intel 4 a18 1.5 7.0 -

SGI-OpenMP-1/8 threads b55 1.5 10.8 20.6

SGI-MPI-1/8 threads b55 1.5 3.9 12.6

the OpenMP version performs so much worse than the MPI version. We think
that this is due to many critical sections, which have to be generated, because
the OpenMP 1.1 standard does not support array reductions. As the OpenMP
2.0 standard [26] allows array reduction, TAF generated code conforming to
OpenMP 2.0 does avoid critical sections. We were, unfortunately, not able to
run that version of the generated code on SGI, due to a problem in the com-
piler’s handling of OpenMP 2.0. It is also remarkable that the ADM value for
MPI on SGI is much better than on Linux. We attribute this to the difference
in grid resolution between the two configurations, which affects the ratio of
memory accesses to computations. While both resolutions need to access the
same number of arrays in memory (albeit of different sizes), the coarse a18
resolution on Linux does fewer operations. This conjecture is supported by
initial ADM tests of the MPI-1 version in a18 resolution on SGI, which show
a performance ratio close to the one for Linux. Finally, SGI values for the
ADM with reduced optimisation are considerably slower than those with full
optimisation for both OpenMP and MPI.

Fig. 1 shows the speedup for OpenMP-1, for the model itself, the TLM
and the ADM for 2, 4, 6, and 8 threads. The speedup for n threads is defined
by the quotient of the run times for 1 and n threads. The ideal speedup
ignoring communication overhead is also indicated. While the TLM speedup
is almost as good as that of the GCM, the ADM speedup lags behind. As
mentioned above, this is presumably due to the critical sections, and OpenMP-
2 is expected to yield a better speedup.

In the MPI case (Fig. 2) the TLM and ADM speedup is similar to that of
the GCM code, with the ADM speedup being slightly better.

7 Application Example

As an example for an application of both the TLM and ADM, the leading sin-
gular vectors of a 24 hour integration have been computed. A singular vector
is an Eigenvalue of A∗A, where A is the Jacobian of the function mapping the
initial state onto the final state, and A∗ its adjoint. Via the definition of the
adjoint, the singular vector depends on the norms in state space at initial and
final times. The leading singular vector is the initial time perturbation that
amplifies the most (in the sense defined by the pair of norms). For the singular
vector computation the automatically generated TLM and ADM have been
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Fig. 1. Speedup for OpenMP-1.1 configuration

extended by hand-coded TLM and ADM versions of formulations for simple
drag and vertical mixing (important damping processes). The coarse a18 res-
olution in the OpenMP version with reduced optimisation for the ADM has
been used. ARPACK [19] is used to solve the Eigenvalue problem.

Fig. 3 shows the dominant singular vector for total energy norms at initial
and final times. Grid points outside the target area indicated by the light
black rectangle on the upper panel and in the top five vertical layers do not
contribute to the norm at final time. The upper panel shows a horizontal view
on the 500 hPa pressure level and the lower panel a vertical cross section aver-
aged over the latitude band from 45 to 55 North. The shaded areas show the
initial temperature component of the singular vector (temperature perturba-
tion in K), and the thin black contours the background temperature (with 0.2
degree contour interval in the top panel and 0.1 in the bottom panel). The
bold black contours show the evolved perturbation in the northward wind
speed in m/s. As expected for a midlatitude perturbation, it evolves from a
small scale, tilted structure at initial time to a larger scale structure at final
time.
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Fig. 2. Speedup for MPI-1 configuration

8 Conclusions

We have presented the generation of TLM and ADM versions of the dynami-
cal core of fvGCM by means of TAF. After initial preparations, the generation
process is fully automated. This automation is important, as it simplifies adap-
tation of the TLM and ADM to future changes of and extensions to the GCM
code.

A TLM integration takes the run time of about 1.5 model integrations. For
the ADM that number varies with the configuration of the GCM in terms of
resolution and parallelisation strategy. In the most favourable case (fine reso-
lution, MPI-1, no check-pointing, problems with the Fortran compiler ignored)
a factor of 3.9 is achieved.

Challenges such as transferring the model’s parallelisation capabilities to
the TLM and ADM, or linearising around an external trajectory have been
overcome. We cannot think of any fundamental obstacle that could seriously
hamper automatic generation of TLMs, ADMs, and even Hessian codes of
models in dynamic meteorology.
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Fig. 3. Leading singular vector for 24 hour integration. See text for details.


