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Abstract
This paper presents an inverse model of radiation transfer processes occurring
in the solar domain in vegetation plant canopies. It uses a gradient method
to minimize the misfit between model simulation and observed radiant fluxes
plus the deviation from prior information on the unknown model parameters.
The second derivative of the misfit approximates uncertainty ranges for the
estimated model parameters. In a second step, uncertainties are propagated
from parameters to simulated radiant fluxes via the model’s first derivative.
All derivative information is provided by a highly efficient code generated via
automatic differentiation of the radiative transfer code. The paper further
derives and evaluates an approach for avoiding secondary minima of the
misfit. The approach exploits the smooth dependence of the solution on the
observations, and relies on a database of solutions for a discretized version of
the observation space.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Atmospheric carbon dioxide is the single most important anthropogenic greenhouse gas.
Its continued increase is the major reason for observed global warming [1]. The increase
is clearly of anthropogenic origin, but it is tempered by uptake from natural reservoirs.
Despite considerable efforts in monitoring the global carbon cycle, the magnitude and
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distribution of carbon dioxide sources and sinks are still uncertain. One of the reasons
relates to a traditional observing system, which relies on sparse network sampling, e.g.
atmospheric concentrations [2], or exchange fluxes with the ocean [3] or the terrestrial
biosphere (see http://www.fluxnet.ornl.gov). Earth observation strategies from space are
able to provide information at medium spatial resolutions (typically of the order of 1 km) over
the entire globe on a regular basis, e.g. the moderate resolution imaging spectroradiometer
(MODIS), multiangle imaging spectro radiometer (MISR), sea-viewing wide field-of-view
sensor (SeaWiFS), global imager (GLI), medium resolution imaging spectrometer (MERIS)
or VEGETATION.

Remote sensing of the terrestrial vegetation poses a classical inverse problem. The
radiation signal observed by a remote sensing instrument at the top-of-atmosphere is analysed
in order to first remove at best the contamination by atmospheric constituents and second
to generate albedo products (hereafter denoted as BiHemispherical Reflectances, BHRs)
characterizing the scattering probability of the coupled vegetation soil systems. This same
albedo can be simulated by radiative transfer (RT) models that solve the radiative balance
within the canopy and the background, by modelling the physical and optical properties of the
vegetation and the underlying surface. The model characterizes the vegetation soil system via
a set of parameters. The inverse problem consists in the estimation of these parameters from
the retrieved albedos. This inverse problem is usually under-determined, i.e. the number of
(unknown) parameters exceeds the number of observations.

One of the traditional approaches to the inverse problem is via so-called look up tables
(LUTs) [4]: in a preliminary step, the parameter space is sampled over a discrete grid, the RT
model runs at each sample point and the simulated observation counterparts are recorded in
an LUT. For any given set of observations, the inversion procedure consists in a search of the
LUT for the simulated counterpart that is closest to the observations, and the solution of the
inverse problem is the parameter set it was simulated from. The LUT approach suffers from
a number of disadvantages: first, the grid in parameter space must be coarse, in order to limit
both the number of runs of the RT model and the time spent for searching the LUT. Note that
computational efficiency is essential, because the processing of global or continental scale
observational data sets requires millions to billions of inverse model runs.

Second, due to the under-determined nature of the inverse problem, the best fit to the
observations is typically achieved on an entire manifold in parameter space. In this situation,
the solution provided by the LUT procedure is unstable. For instance, it is highly sensitive
to the specification of the grid in parameter space: a slight change of the grid may shift the
solution to a completely different region in parameter space. Third, it is difficult to furnish
the solution with uncertainty ranges (error bars) that are consistent with uncertainties in the
observations and the RT model. These uncertainty ranges are essential for the use of the
estimated parameter values to better constrain models representing the carbon, water and
energy cycle.

This paper presents an alternative approach, which regularizes the inverse problem via
a priori information on the parameters. In contrast to the LUT approach, the parameter
space is searched by a gradient algorithm for a minimum of the misfit to the observations,
including a term that quantifies the deviation from the prior parameter values. The standard
starting point for this iterative search is the prior parameter set. Uncertainty estimates for the
optimal parameters are approximated via the inverse of the second derivative of this misfit at
its minimum. The necessary derivative information is provided via automatic differentiation
(AD) [5]. The AD tool TAC++ [6] is used to transform the C++ source code of the RT
model into a highly efficient code for the evaluation of first (adjoint code) and second (Hessian
code) derivatives. Our inverse modelling system, the Joint Research Centre Two-stream
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Inversion Package (JRC-TIP), is built around the RT code [7] which provides a two-stream
type of solution to the radiation transfer problem in vegetation canopies. The system has been
successfully applied to estimate seven vegetation parameters over a number of sites [8, 9]
from observed BHRs in two spectral broadbands, namely the visible (0.3–0.7 μm) and near-
infrared (0.7–3.0 μm) domains, i.e. there are two observations to constrain seven parameters.
The challenging objective is to apply JRC-TIP in the same configuration but to observational
data sets that provide a synoptic coverage of continents or the entire globe. An example is
described by M Clerici et al[10], who process an observational data set over Europe provided
by the MODIS sensor in 2005. Given a pixel size of 1 km, the application requires on average
12.0 million inverse problems to be solved for every available 16 day period over a year. The
present paper describes a set of extensions of JRC-TIP, tailored to enhance robustness and
computational efficiency for such large-scale applications.

The remainder of this paper is organized as follows: section 2 describes the model and
the observational data. Section 3 introduces JRC-TIP. Section 4 describes and demonstrates
the extended package. Finally, section 5 gives a summary and conclusions.

2. The radiation transfer model

Our inversion package, JRC-TIP, is built around the two-stream radiation transfer scheme
developed by Pinty et al [7]. The scheme calculates the radiation transfer within the
vegetation canopy. It is designed for use in climate models, which, driven by the need of
computational efficiency, can only accommodate one-dimensional schemes. In this approach,
three-dimensional effects are taken into account via so-called effective state variables that
characterize the radiative properties of the vegetation layer and the albedo of the background
that corresponds to the ‘true’ (by contrast to effective) value. In total there are four state
variables for each spectral band. Three of them, the leaf reflectance rl, transmittance tl (or
alternatively the leaf single scattering albedo ωl = rl + tl and asymmetry factor dl = rl/tl) and
the background reflectance, are wavelength dependent. The fourth one, the leaf area index
(LAI), quantifies the density of leaves in the vegetation layer and does not exhibit any spectral
dependence. The scheme calculates the fluxes scattered by (albedo, R), absorbed in (A) and
transmitted through (T) the vegetation canopy. The fluxes are normalized by the incoming
solar flux, i.e all three fluxes take values in the interval [0, 1]. The appendix details the
functional dependence of the simulated fluxes on the state variables (in the following denoted
parameters) via the model equations. Results simulated by the two-stream model have been
compared against those delivered by a Monte Carlo model under a large variety of standard
and unfavourable canopy conditions [7]. The differences between both simulations were
found to be confined within the 3% relative accuracy range of the scattered and transmitted
fluxes. Further, the model participated in the radiation transfer model inter-comparison
(RAMI) initiative for benchmarking models of the radiative transport on the terrestrial surface
(http://rami-benchmark.jrc.ec.europa.eu). Figure 1 illustrates the flow of information from
parameters to radiant fluxes for the case of two wavelengths. It is convenient to introduce a
compact notation, with x̃ denoting the vector of all parameters, ỹ denoting the vector of all
radiant fluxes and

M : R
7 → R

6

x̃ �→ ỹ

denoting the model. In principle, all of the radiant fluxes are observables, but typical space
applications such as the large-scale application in section 4 use observations of the BHRs
in two broad visible and near-infrared spectral bands. Denoting by P the projector onto the
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Figure 1. Flow of information from parameters to radiant fluxes. Indices vis and nir respectively
denote visible (0.3–0.7 μm) or near-infrared (0.7–3.0 μm) versions of process parameter or radiant
fluxes.

observed subspace of radiant fluxes, we can define a mapping MP = P ◦M from the parameter
space into the observed sub-space.

3. Inverse model

Our inverse model, the JRC-TIP, delivers a set of variable values entering the two-stream
forward model from a given set of observations and the available prior information. Our
methodological approach is based on [11]: the a priori state of information is quantified by
a probability density function (PDF) in parameter space, the observational information by a
PDF in observation space and the information from the model by a PDF in the joint space, i.e.
the Cartesian product of parameter and observation spaces. The inversion combines all three
sources of information and yields a posterior PDF in the joint space.

Prior and observational PDFs are difficult to specify. We use Gaussian shapes with
respective mean values denoted by x0 and d and respective covariance matrices denoted by
C(x0) and C(d); the square roots of the seven diagonal entries of the prior covariance matrix
are respectively denoted by σi(x0).

Since the model is only weakly nonlinear, we can approximate the posterior PDF by a
Gaussian PDF. The corresponding marginal PDF in parameter space is thus also approximately
Gaussian, with the mean value x and covariance C(x)−1. The mean x is approximated by the
maximum likelihood point, i.e. the minimum of the misfit function, J : R

7 → R:

J (x̃) = 1
2 [(MP (x̃) − d)T C(d)−1(MP (x̃) − d) + (x̃ − x0)

T C(x0)
−1(x̃ − x0)]. (1)

C(x) is approximated by the inverse of the misfit function’s Hessian, H, evaluated at x (see
also [11]):

C(x) = H(x)−1. (2)
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To understand this relation it is useful to look at the case of a linear model (denoted by M ′
p):

H(x) = M ′
p

T
C(d)−1M ′

p + C(x0)
−1. (3)

The Hessian is the sum of two terms: one reflecting the strength of the constraint by the
prior information, and the other reflecting the observational constraint. Typically adding the
observational constraint increases the curvature of the cost function which via equation (2)
translates to a reduction in uncertainty compared to the prior.

From the optimal parameter set we can simulate all radiant fluxes (including the non-
observed ones) via y = M(x). To assess the strength of the observational constraint on these
simulated radiant fluxes, we use M ′, the first derivative of M to propagate posterior parameter
uncertainties forward to the radiant fluxes:

C(y) = M ′C(x)M ′T . (4)

This diagnostic step is particularly useful for comparing the TIP results with independent
observations.

Equation (1) is implemented around the C software code of the original two-stream
version. The minimization of J uses a quasi-Newton algorithm with BFGS updates [12],
which relies on the code for evaluating J and on the code for evaluating its gradient.

The code for evaluating the gradient is generated by AD of the function code: the
function code is decomposed into elementary functions (such as +,−, sin(·)), which (more
or less) correspond to the individual statements in the code. Differentiating these elementary
functions is simple and yields the so-called local Jacobians. According to the chain rule,
the product of the local Jacobians yields the derivative of the composite function. There are
two main strategies for evaluating this multiple matrix product. The tangent code uses the
order in which the original function code evaluates the statements to evaluate the product
of their local Jacobians. The adjoint code performs this evaluation in the reverse order. In
AD terminology, the tangent code operates in forward mode, and the adjoint code operates
in reverse mode. Similar to the finite difference approximation, the computational resources
needed in forward mode increase with the number of independent variables. In reverse mode,
they are roughly proportional to the number of dependent variables and virtually do not depend
on the number of independent variables. In the nonlinear case the local Jacobians depend on
the point, where they must be evaluated. Within the function code this point is associated with
a set of variables, the so-called required variables in AD terminology [13]. Since the adjoint
code evaluates the local Jacobians in the reverse order of the original function, providing these
required variables is more complex and computationally more expensive than in the tangent
code. Hence, the reverse mode is only favourable when the number of independent variables
exceeds the number of dependent variables by a break even value, which, for a scalar-valued
function, is typically in the range of 2–5 independent variables. As opposed to derivative
approximation by finite differences (also known as numerical differentiation), AD provides
sensitivity information that has the same accuracy as the function code, i.e. it is accurate within
the machine’s round-off error.

The code of J, which, excluding comments, comprises about 300 lines of C, was
differentiated by the AD tool TAC++ [6]. TAC++ implements a number of concepts for
practical derivative coding suggested in [14]. This implementation is based on the same
concepts as the AD tool transformation of algorithms in Fortran (TAF) [13], which is being
successfully applied for almost a decade to an ever increasing number of Fortran 77-95 codes
from a wide range of disciplines [15]. This includes large-scale applications to codes of up to
300 000 lines excluding comments.

TAC++ can generate both tangent and adjoint codes. With seven independent variables
and one dependent variable the adjoint code is computationally more efficient. Depending on
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Figure 2. Schematic flow of information through JRC-TIP.

platform, compiler and compiler options, it takes the CPU time of 3–4 function evaluations to
evaluate both the function and its gradient. This is the typical range for TAC++ applications;
for further examples we refer to [6].

The code for evaluating the Hessian in equation (2) is generated by reapplying TAC++ in
forward mode to the adjoint code (forward over reverse mode). This code does evaluate the
entire Hessian (and the gradient) in one run, i.e. it simultaneously evaluates seven directional
derivatives of the gradient of J. This takes a CPU time comparable to about 23 evaluations of J.
The inversion follows the computation of Hessian’s eigenvalues via the cyclic Jacobi method
[16].

The code for evaluating the Jacobian M ′ is generated by applying TAC++ in forward mode
to the code of M. This code evaluates M and M ′ in one run and takes a CPU time comparable
to about 2.2 evaluations of M.

The flow of information through JRC-TIP is summarized in figure 2. The inverse step
consists of the minimization of J, and the evaluation and inversion of H(x). The iterative
minimization procedure starts from the prior value x0. The diagnostic step evaluates M and
propagates the posterior uncertainties from parameters to radiant fluxes.

The inversion package has first been applied over single sites with known characteristics
to estimate parameters and radiant fluxes, together with their uncertainties, from visible/near-
infrared BHR pairs provided by MISR or MODIS sensors [8, 9]. Note that although two-
dimensional observational data sets are typical for many applications, the package is capable
of handling any combination of radiant fluxes as observables. A typical run of the inversion
step requires about 1 ms on a Linux platform with Intel Xeon 2.5 GHz CPU, gcc version 4.3.2
compiler and ‘-O2 -msse2 -ffast-math -funroll-loops’ options (platform 1). Another Linux
platform with two Intel 3.16 GHz CPUs, gcc version 4.3.3 compiler and ‘-O3 -ffast-math
-funroll-loops -msse4.1 -static’ options (platform 2) achieves about twice that speed.

4. Extending the inverse model

This section discusses a series of procedures aiming at increasing the performances and in
particular the robustness of the JRC-TIP. This has been motivated by the methodological
challenges arising from continental-scale or global-scale applications of the package. For an
example (see [10]) we use BHR observations derived by the MODIS sensor in the visible
and near-infrared spectral bands as available from MODIS collection 5 products (MCD43B3)
generated at 0.01 degree resolution for successive 8 and 16 day periods. We use the level 3
MODIS product (MCD43B3) provided every 16 days by the sensor on-board Terra platform
(so-called collection 5). C(d) is assumed to have only zero off-diagonal elements; for the
diagonal we use the square of a σ that corresponds to 5% of the observed value it refers
to. σ values below 0.0025 (corresponding to a BHR value below 0.05) are, however, set to
the minimum value (floor) of 0.0025. Given a regular latitude/longitude grid of 0.01 degree
(around 1 km), the extended European window shown in figure 7 covers 22.5 million pixels.
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Figure 3. Distribution of posterior J over the observation space as extracted from the base version
of the TIP table (C(x0) based on ‘snow’ case prior information).

Due to the sea extent and missing data, on average about 12 million of those pixels represent
valid inputs for the inverse problem.

We are using two sets of prior information: one under normal conditions, and one in the
presence of snow. Snow is detected via another satellite product, namely MCD43B2. Both
sets are taken from [9], where they are called ‘standard’ (i.e. not ‘green’) and ‘snow’. In
both cases all off-diagonal entries of C(x0) are zero, except for those among the background
reflectance in the two wave bands.

Recall that both observed BHR values are limited to the interval [0, 1[. We can cover this
interval by a discrete set of 1000 BHR values using a regular grid with a spacing of 0.001,
a value considerably smaller than the observational uncertainty that ranges from 0.0025 to
0.05. This provides a discretization of the set of possible observations that includes only
1 million observation pairs. We ran JRC-TIP for each pair in the set and recorded the result in
a database, which we denote as the TIP table. Note that the TIP table differs from the tables to
be constructed for the LUT approach, because it is based on a discretization of the observation
space rather than a discretization of the parameter space.

The TIP table is useful in a number of ways. Our first use is as a test bed for the
robustness of JRC-TIP. One possible visualization of the TIP table is by plotting the value
of the misfit function for the posterior parameter (J (x)) over the observation space, which is
shown for the ‘snow’ case prior parameters (figure 3). This yields a smooth ground surface
with a number of outliers above the ground surface. In fact many of the outliers do sit on
a second surface above the ground surface (not recognizable in this two-dimensional form
of the graph). The concentration of outliers is particularly high for low BHR values in the
near-infrared domain. J (x) expresses the degree of consistency between the observations, the
prior information and the model. For seven unknowns one would expect a value around 3.5
[11]. While lower values indicate a too conservative choice of uncertainties, higher values
indicate too tight uncertainties. Figure 4 displays the near-infrared component of the residual
(MP (x̃) − d) over the observation space, again based on ‘snow’ case prior parameters. The
residuals confirm the same outliers as the misfit function. Evaluating the forward model Mp

at the prior value, x̃ = x0, yields BHR values of 0.29 in the near-infrared and 0.09 in the
visible domain. Consequently this pair is associated with a zero residual. Increasing the near-
infrared component in the observation produces a negative near-infrared residual, because the
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Figure 4. Distribution of the near-infrared component of the residual (MP (x̃) − d) over the
observation space as extracted from the base version of TIP table (C(x0) based on ‘snow’ case
prior information).

inversion achieves a compromise between prior and observational terms in the misfit function
(equation (1)). Conversely, a reduced near-infrared component produces a positive residual.
This effect is modulated by the visible component in the observation, because both wave bands
are coupled via the single spectrally independent parameter, LAI.

The occurrence of the outliers is typically caused by the multiple minima of
equation (1). For an example figure 5 displays J over a section in parameter space between
x1, the estimated parameter value for a point P1 in observation space, and x2, the estimated
parameter value for P2, one of the neighbours with lower minimum. The figure demonstrates
that for P1 the misfit J has a second local minimum close to x2. In fact this point yields a
better fit to both data and prior (and thus a lower value of J), but the minimization algorithm
failed to detect it, because it got trapped at x1. Standard gradient procedures are well known
for this behaviour. Finding global minima is in general a challenging task. Typical strategies
include evolutionary techniques [17], or Monte Carlo (i.e. random) sampling of the posterior
PDF, e.g. the metropolis algorithm [18] or simulated annealing [19]. In the following we
will pursue alternative approaches to this problem that fit well within our gradient-based
framework.

The path of the iterative minimization procedure through the parameter space depends
on the starting point. In the above example, we use the prior value x0 as the starting point.
Starting a new minimization from a different point, we could hope to end up in the minimum
near x2. For the extension of our inversion package we thus need to define a sequence of
starting points providing a reasonable sample of the parameter space. Building on the prior
value and the prior uncertainties, we define five starting points by

s1,i = x0,i

s2,i = x0,i + σi(x0)

s3,i = x0,i − σi(x0)

s4,i = x0,i + (−1)i ∗ σi(x0)

s5,i = x0,i − (−1)i ∗ σi(x0),

where i ∈ {1, . . . , 7}.
Based on this sequence of starting points we devise a multiple starting point strategy

(MSP) that extends the base version of the package, which used the starting point s1 to build
the initial TIP table. The strategy MSP runs inversions from the remaining four starting points
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Figure 5. J over a section in parameter space (solid line). Contributions by the prior term (dotted
line) and by the data term (dashed line).

of the sequence. Whenever one of these inversions yields a lower value of J, the corresponding
entry in the TIP table is updated. A second strategy, multiple starting point threshold (MSPT),
proceeds likewise but, to save CPU time, stops the sequence of inversions whenever a J value
below a certain threshold (we use a value of 3.0) is reached.

A further strategy to enhance robustness is based on the observation that the misfit and
the optimal parameters are smooth functions of d. We define a function g : R

7 × [0, 1]2 → R
7

via

gj (x, d) = ∂J̃

∂xj

(x, d) (j ∈ {1, . . . , 7}), (5)

where we use J̃ to denote the misfit of equation (1) as a function of both arguments. g
is a smooth function with respect to its first and second arguments. For the latter this is
obvious from equation (1), whereas regarding the former, g is indeed composed of smooth
elementary functions defined by the individual statements in the two-stream code as long as
we stay away from denominators of zero. In this respect the code contains two critical spots.
At one spot the original code contained a test for a denominator of zero during the function
evaluation, which would have terminated the evaluation. At the other spot a square root in the
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Figure 6. Alternative code avoiding singular derivative of the square root.

function evaluation opens the possibility of a zero denominator in the corresponding derivative
statement. Since this spot only became problematic once derivatives were evaluated, there
was no special treatment in the original function code. Hence, we had to add a test for values
close to zero and filled this gap in continuously differentiable form as illustrated by the code
fragment in figure 6. At ksquare = LEPSILON the code is once continuously differentiable
but not twice. Thus, there may be points at which g is not differentiable with respect to its
first argument, i.e. g is continuous and piecewise continuously differentiable. In the current
setup, with two observed BHRs and the above-described prior information we do, however,
stay away from this singularity. The singularity can only be approached in cases, where the
line search of the minimization algorithm suggests parameter sets far outside the physically
meaningful domain. In summary g is continuously differentiable in a domain that includes
any reasonable pair of parameters and observations.

Now we select an observation pair db and denote by xb the corresponding minimum of the
misfit provided by JRC-TIP. Since g(xb, db) = 0 and ∂g

∂x
(xb, db) is the non-singular Hessian

of J, by virtue of the implicit function theorem there are a domain D around db and a function
x(d) with xb = x(db) and

0 = g(x(d), d) = ∂J̃

∂x
(x(d), d) (d ∈ D). (6)

Here x(d) remains a minimum of J since H(x) remains positive definite in D. Moreover, the
theorem provides the derivative of x(d):

dx

dd
(d) = −∂g

∂x
(x(d), d)−1 ∂g

∂d
(x(d), d) = −H(x(d))−1M ′

P (x(d))T (d ∈ D), (7)

where ( )T denotes the transposed. The derivative approximates the sensitivity of the minimum
with respect to a small change in the observations. Particularly high sensitivities occur when
the orthogonal complement of the null space of M ′

P (the row space) projects well onto a
small eigenvector of H. Since we are working from the two-stream code rather than from an
analytical expression of MP, we cannot further simplify this expression without ignoring the
second derivative of MP.

In essence the above analysis states that both x and J (x) are smooth functions of d. We
can exploit this to devise a further strategy for detecting local minima. The next neighbour
starting point (NSP) strategy scans the initial TIP table for points in observation space that
yield outliers in the solution. To detect these outliers the misfit at the optimum, the posterior
parameter vector or the posterior uncertainties can be used. Our implementation works as
follows: in a first step the TIP table is scanned for the local maxima of the misfit of the
optimum. All these points are flagged bad, and for them we rerun TIP starting from the
posterior parameter vector of the good neighbour with lowest J (x). In case this results in a
lower J (x) we update the corresponding entry in the TIP table. We do a few iterations of this

10
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Table 1. Performance of various inversion strategies.

NSP
Strategy iterations Time (s) Mean J (x) Max J (x) Extrema Unrealistic

Base 0 429 4.9801 8572.86 12 191 104 982
1 4.8403 1710.97 9335 105 124

14 4.7523 574.28 2168 106 386
MSP 0 2840 4.1441 1181.98 7589 89 893

1 4.1046 304.49 5832 89 357
10 4.0799 42.22 2239 89 206

MSPT 0 1280 4.1496 1181.98 8221 92 775
1 4.1100 304.49 6387 92 241
9 4.0853 42.22 2328 92 063

procedure, each one resulting in an update of the TIP table, until we cannot further reduce the
number of bad points. In a second step we repeat the same procedure, now scanning the TIP
table for local extrema of the LAI instead of J (x).

Table 1 evaluates the TIP tables produced with the different strategies. Rows 1–3 refer to
the base table without (first row) and combined with the NSP strategy (rows 2 and 3). Row 2
evaluates the TIP table after the first iteration and row 3 after convergence, which in that case
was achieved after 14 iterations. Similarly rows 4–6 evaluate the tables produced by MSP
and rows 7–9 those produced by MSPT. The third column shows the CPU time required to
build the various tables on platform 2. The additional time for the NSP approach is negligible,
because the number of extrema (column 6) is very small compared to the observation space.
Surprisingly, MSP is about a factor of 7 slower than base, although it performs only five times
more inversions. This is because, on average, the inversions starting from perturbed prior
values require more iterations to converge. MSPT is about a factor of 2 faster than MSP. We
use the mean J (x), maximum J (x), number of extrema and unrealistic values (columns 4 to 7)
to quantify robustness. Extrema are a proxy for outliers. Unrealistic values are characterized
by at least one parameter value outside the physically reasonable range. We deliberately
chose not to exclude the occurrence of such values by the design of our inversion algorithm,
because they are useful to diagnose inconsistencies in the observations, the prior information
and the model. Without the NSP, the MSP performs better than MSPT, which in turn is
superior to base. The NSP reduces the number of outliers considerably, for the base table by
about a factor of 6, and for the MSP and MSPT tables by about a factor of 3. The numbers
after the first NSP iteration demonstrate that it is useful to carry out more than one iteration.
Interestingly, the NSP increases the number of unrealistic solutions when operating on the TIP
table generated by the base approach but not when operating on those generated by the MSP
and MSPT approaches. Note that typical applications (e.g. [10]) are restricted to a subset of
the observation space, in which extrema and unrealistic solutions are less frequent and where
the ground surface of figure 3 exhibits moderate J (x).

To illustrate the benefit of the TIP table, the above-mentioned large-scale application has
been reprocessed with a revised TIP table that was updated by combining MSPT with the
NSP. As compared to the TIP table’s base version, this reduces the percentage of unrealistic
solutions from 1.43 to 0.21 and the percentage of solutions with J (x) > 3 from 6.43 to 0.18.
For each observation pair in the data set, the closest pair on the grid is determined, the TIP
solution read in and then processed. The form of the processing depends on the application.
For instance, it can be the extraction of one of the parameters, e.g. LAI, that is written to
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Figure 7. JRC-TIP result over Europe based on the final TIP table.

a file, together with an error bar (reflecting the ±1 sigma range). It can also be one of the
non-observed radiant fluxes, again with the error bar. Or a combination of the parameters can
be mapped onto channels for red, green and blue colours to produce an instructive map. As
an example, we select the data set from the 16 day period ranging from Julian day 177 to 193
of year 2005, to produce the map in figure 7. The green channel shows LAI, the red channel
shows the background reflectivity in the near-infrared domain and the blue channel shows the
leaf single scattering albedo ωl in the visible domain. Whenever there is snow, we simply use
white colour. Pixels without observations are black. The remaining bad pixels are light grey.
Pixels with a solution outside the physically reasonable range are dark grey. The use of the
TIP table has reduced the required CPU by a factor 100.

5. Conclusion

We presented the inversion package JRC-TIP for the RT within the vegetation canopy. The
package minimizes the model data misfit including the deviation from prior information on
the unknown model parameters via a quasi-Newton method. It uses the second derivative of
the misfit to approximate uncertainty ranges for the estimated model parameters. It further
propagates uncertainties from parameters to unobserved radiant fluxes via the model’s first
derivative. All derivative information is provided by AD of the RT code. The generated
derivative code is highly efficient and as accurate as the model code itself.

We highlighted a particular setup of the inverse model which estimates seven parameters
from two observed radiant fluxes. For this application we introduced the TIP table, which
is based on a fine discretization of the observation space. The TIP table contains for every
point on the grid in observation space the associated TIP solution, i.e. the posterior parameter
estimates including their uncertainty and the value of the misfit function.

We demonstrated the use of the TIP table to devise and discuss a set of extensions of the
package that enhance its robustness. The most efficient of these extensions exploits the smooth
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dependence of the model parameters and their minimum on the observations. We demonstrated
the performance of the enhanced package for a large-scale application that requires to solve
hundreds of millions of inverse problems. Not only does the TIP table provides an enormous
speed, it also considerably reduces the fraction of failures.

The concepts presented in this paper can be generalized to other inverse problems that fulfil
the following requirements. The use of derivatives requires a smooth model. The additional
use of AD requires the model to be coded in a programming language that is accessible to an
existing AD tool such as Fortran 77-95 or C(++). The additional application of a database such
as the TIP table is useful in data fitting problems whenever a sufficiently fine discretization of
the data space is computationally feasible.
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Appendix. Two-stream forward model

In [7] a new version of a two-stream model suited for the simulation of solar radiant fluxes
scattered by, transmitted through and absorbed in, a vegetation canopy is developed and
validated. This 1D model ensures the correct balance between the scattered (R), transmitted (T)
and absorbed (A) radiant fluxes. It applies the two-stream formulation originally established
by [20] to solve the black background problem.

In the case of structurally heterogeneous canopies, effective instead of true state variables
have to be adopted, which were introduced in section 2. They consist of the LAI, which is
the only spectrally invariant quantity, the leaf single scattering albedo ωl and the asymmetry
factor dl. The fourth quantity is the albedo of the background, rbgd, which is itself defined as
the true (by contrast to effective) value and retrieved as such. With s = (LAI, ωl, dl, rbgd) we
denote the quadruple of state variables that enter the forward model for a given wavelength of
the solar radiation. Note that, for easing readability, the˜(tilde) notation was dropped with
respect to [7].

In general, the surface albedo is approximated by a simple weighting of two distinct
surface albedo types, each associated with an extreme incident radiation field: the directional
hemispherical reflectance (DHR), associated with an incident intensity field which is purely
collimated, and the BHRiso, associated with an incident intensity field that is purely isotropic.
Our implementation is based on a weight of 1 for BHRiso and 0 for DHR, i.e. we have
R = BHRiso.

While it is beyond the scope of this paper to repeat the entire mathematics of [7] that
is involved to derive the scattered fluxes, we will briefly sketch the essential equations to
compute R. According to the weighting function above, R is given by [7, equation (33)]

R(s) = RColl
veg (s) + rbgd · T Coll

veg

2
(s)

1 − rbgd · RColl
veg (s)

. (A.1)

Here RColl
veg (s) represents the contribution due to the radiation travelling downwards that has

interacted with the vegetation canopy elements only. This is the so-called black background
contribution since R(s) = RColl

veg (s) is the case of a perfectly absorbing background (rbgd = 0).
We follow the approach of [20, equations (12) and (13)] for the two-stream solutions.

For the usual range of canopy optical depth values and under the the assumption of a random
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distribution of leaf normal orientation, RColl
veg and T Coll

veg are computed in accordance with
[7, equations (B2) and (B3)]:

RColl
veg (s) = ωl

(1 − k2 μ2)
[
(k + γ1) exp

(
k 1

2 LAI
)

+ (k − γ1) exp
(−k 1

2 LAI
)]

×
[
(1 − k μ) (α2 + k γ3) exp

(
k

1

2
LAI

)
− (1 + k μ) (α2 − k γ3) exp

(
−k

1

2
LAI

)
− 2 k (γ3 − α2 μ) exp

(
−1

2
LAI/μ

)]
(A.2)

and

T Coll
veg (s) = T UnColl

veg (s) − ωl exp
(− 1

2 LAI/μ
)

(1 − k2 μ2)
[
(k + γ1) exp

(
k 1

2 LAI
)

+ (k − γ1) exp
(−k 1

2 LAI
)]

×
[
(1 + k μ) (α1 + k γ4) exp

(
k

1

2
LAI

)
− (1 − k μ) (α1 − kγ4) exp

(
− k

1

2
LAI

)
− 2 k(γ4 + α1 μ) exp

(
1

2
LAI/μ

)]
(A.3)

with
μ = 0.5/0.705

α1 = γ1 γ4 + γ2γ3

α2 = γ1 γ3 + γ2γ4

k = (
γ 2

1 − γ 2
2

)1/2
.

(A.4)

Using the terminology in [20], γ3(γ4) corresponds to the intercepted fraction of direct
radiation scattered in the backward (forward) direction, i.e. creating a source term inside the
medium, while γ1(γ2) corresponds to the fraction of the scattered radiation which is redirected
in the forward (backward) hemisphere. Recall from section 2 that ωl = rl + tl and dl = rl/tl .
With δl = rl − tl , the γ coefficients are given by [7, table 4]

γ1 = 2

(
1 − ωl

2
+

δl

6

)
γ2 = 2

(
ωl

2
+

δl

6

)
γ3 = 2

ωl

(
ωl

4
+ μ

δl

6

)
γ4 = 1 − γ3.

(A.5)

The first term on the right-hand side in equation (A.3), T UnColl
veg (s), is derived by the formula

T UnColl
veg (s) = exp

(
−1

2
LAI

)[
1 − 1

2
LAI +

(
1

2
LAI

)2

· exp

(
1

2
LAI

)
· �(0, LAI/2)

]
(A.6)

as shown in [7, equation (16)].
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Here

�(0, LAI/2) =
∫ ∞

LAI/2
t−1 exp(−t) dt (A.7)

is the incomplete Gamma function that can be evaluated accurately using a continued fraction
development for any value of LAI/2.
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